- 自动驾驶之心规划控制理论&实战课程
vsdvsvfhf
自动驾驶人工智能机器学习
单目3D与单目BEV全栈教程(视频答疑)多传感器标定全栈系统学习教程多传感器融合:毫米波雷达和视觉融合感知全栈教程(深度学习传统方式)多传感器融合跟踪全栈教程(视频答疑)多模态融合3D目标检测教程(视频答疑)规划控制理论&实战课程国内首个BEV感知全栈系列学习教程首个基于Transformer的分割检测视觉大模型视频课程CUDA与TensorRT部署实战课程(视频答疑)Occupancy从入门到精
- 【XR】优化SLAM SDK的稳定性
大江东去浪淘尽千古风流人物
xr
优化SLAMSDK的稳定性是确保增强现实(AR)和虚拟现实(VR)应用在各种环境和设备上都能稳定运行的关键。以下是一些主要的优化方法:1.传感器融合优化方法:将多个传感器的数据(如摄像头、加速度计、陀螺仪、磁力计)进行融合,以补偿单一传感器可能存在的误差。优势:提高了环境理解的准确性,减少了由于单一传感器误差导致的抖动和漂移现象。实例:ARKit和ARCore都利用了传感器融合技术来增强稳定性。2
- 无人机及固定机巢自动化控制软件技术详解
无人机技术圈
无人机技术无人机自动化运维
随着科技的飞速发展,无人机技术已成为众多行业中不可或缺的一部分,特别是在航拍、环境监测、农业植保、应急救援等领域展现出巨大潜力。无人机及固定机巢自动化控制软件作为支撑无人机高效、安全、自主运行的核心,集成了先进的系统架构、飞行控制算法、传感器技术、通信协议及数据处理能力。本文将从系统架构设计、飞行控制算法、传感器融合技术、通信与数据传输、自主巡航与定位、故障检测与预警、应急响应与处理、数据处理与报
- 华为问界M9:领跑未来智能交通的自动驾驶黑科技
华西建筑关联专业公司 华鲲智慧
华为自动驾驶科技
华为问界M9是一款高端电动汽车,其自动驾驶技术是该车型的重要卖点之一。华为在问界M9上采用了多种传感器和高级算法,实现了在不同场景下的自动驾驶功能,包括自动泊车、自适应巡航、车道保持、自动变道等。华为问界M9的自动驾驶技术惊艳之处在于其传感器融合和算法优化。通过多种传感器的融合,车辆可以更加精准地感知周围环境,并实现更加智能的决策和控制。同时,华为在自动驾驶算法方面也进行了大量的优化和改进,使得车
- 基于机器视觉的智能防疫巡检机器人结构设计
biyezuopinvip
机器人机器视觉防疫机器人巡检机器人毕业设计cad图纸论文
目录摘要11绪论31.1课题研究意义31.2智能防疫机器人的现状及发展31.3移动机器人技术的研究现状51.4智能防疫巡检机器人软件研究现状61.5多传感器融合研究现状61.6论文主要内容及结构安排72智能防疫巡检机器人系统需求分析与整体方案设计82.1系统设计的需求分析82.1.1功能需求82.1.2性能需求82.2智能防疫巡检机器人系统方案设计102.2.1整体方案102.2.2软件系统方案1
- veloview读二维雷达数据_Windows下VLP16激光雷达数据解析
大嘴博士
veloview读二维雷达数据
最近,实验室有一个对VLP16数据解析的需求,要求在Windows系统下单独把VLP16的数据解析整理出来,作为后期多传感器融合的一个必要基础准备。无奈从ROS转战Windows,网上查了查Windows系统下velodyne激光雷达的驱动,只找到了一个VeloView,很复杂,VeloView依赖winpcap、paraview、qt、python......单独摘出数据解析模块很麻烦。Kitw
- 环境配置:Udacity的Self-Driving项目安装运行
马上到我碗里来
#环境配置Udacity自动驾驶环境配置
前言Udacity的自动驾驶工程师纳米学位项目(Self-DrivingCarEngineerNanodegreeProgram)是一项面向学习者的前沿技术项目,旨在提供全面的自动驾驶工程师培训。该项目由Udacity与自动驾驶领域的领先公司和专业人士合作开发,涵盖了从传感器融合到深度学习等多个方面的内容。本篇内容将介绍此项目如何在自己的环境中进行配置。希望大家通过这个项目,能够在自动驾驶领域取得
- 基于Raspberry Pi的自动巡航与避障系统(二)
GT开发算法工程师
人工智能python矩阵opencv
在上一篇中,我们讨论了智能小车的避障逻辑实现,在本篇中,我们将进一步扩展智能小车的功能,包括更高级的避障策略、路径规划和导航功能,同时,我们还将提供相应的代码示例,以帮助读者更好地理解和实现这些功能。更高级的避障策略多传感器融合避障:结合使用超声波传感器、红外传感器和摄像头等多种传感器,通过数据融合算法,提高障碍物检测的准确性和可靠性。这样,智能小车可以更准确地判断障碍物的位置、大小和形状,从而采
- 【PMF代码复现及可视化】ICCV 2021 基于视觉感知的多传感器融合点云语义分割
努力弹琴的大风天
融合语义分割算法PMF人工智能计算机视觉
前言本文在Ubuntu18.04下,使用python3.6pytorch1.8.2+torchvision0.9.2环境运行。电脑配置:NVIDIAGeForceRTX3060。显卡不是特别好,运行训练代码花费4天11个小时。数据集非常大,原始数据集按照数据集格式和架构配置完成165.2GB左右,生成semantic-kitti-fov数据集28.1G。如果没有足够的空间,不建议跑这个论文项目。考
- 第一周文献阅读报告
半个轮子工
论文阅读物联网
文献阅读报告泛读1.《毫米波与太赫兹技术》2.《基于物联网的智能养老系统》3.《基于空间聚类的FMCW雷达双人行为识别方法》4.《太赫兹应用分析和展望》5.《车载毫米波雷达应用研究》6.《基于压力传感器的跌倒检测系统研究》7.《基于隐马尔可夫模型的老年人跌倒行为检测方法研究望》8.《矿用卡车毫米波雷达防碰撞系统的研究与应用》9.《基于YOLO网络的人体跌倒检测方法》10.《基于多传感器融合的老人跌
- 解锁多模态独特魅力-“机器人+Agent+多传感器融合+3DLLM”诠释终极组合大招!
xwz小王子
LLM机器人机器人3d自感知全能家务
01-Multiply算法背景01.01-触觉传感器触觉传感器是一种用于感知和测量物体接触力、形状、纹理和其他相关参数的传感器。它们模拟人类触觉系统,通过收集和解释物体与传感器之间的相互作用来获取信息。工作原理:触觉传感器使用不同的原理来感知接触力和其他触觉信息。常见的触觉传感器技术包括压电传感器、电容传感器、电阻传感器、光学传感器和弹性元件等。接触力测量:触觉传感器能够测量物体施加在其表面的接触
- 基于多传感器的后融合的目标跟踪如何实现?都有哪些基本流程?
自动驾驶之心
目标跟踪人工智能计算机视觉机器学习
点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取讲师:Edison课程内容:基于多传感器后融合的目标跟踪(0.课前导学1.自动驾驶中的融合跟踪)笔记作者:王汝嘉0.课前导学0.1主讲人介绍0.2课程关键词0.3学习资料推荐1.自动驾驶中的融合跟踪1.1自动驾驶中的感知任务1.2多传感器融合的主要方法1.3多传感器融合跟踪的基本流程1.4多目标跟踪的数据集与性能指标以上内容均出自《
- 2020-05-20
bokli_dw
启发式算法:与过去的经验有关空缺几页少一张回顾遗传算法:交叉变异的概率每年考试是开卷做控制、天线、光通信。你的研究方向是什么?你觉得哪门智能信息处理方法可以在你的研究方向上很有帮助??第九章多传感器融合技术知识表示-模糊集-粗集神经网络-机器学习最重要的是搜索--智能算法:遗传、免疫、蚁群算法。每个算法在哪方面运用起来最得心应手就用哪个fusion--融合无人驾驶:融合很多的信息--信息融合是将来
- Ethzasl MSF编译与运行
稻壳特筑
SLAMC++多信息融合SLAM
多传感器融合框架EthzaslMSFFramework编译与运行:对应论文:ARobustandModularMulti-SensorFusionApproachAppliedtoMAVNavigation.2013RIOS.对应代码:https://github.com/ethz-asl/ethzasl_msf系统:Ubuntu16.03+ROSKinetic创建工作空间:mkdir-p/MSF
- 论文笔记(二十)VisuoTactile 6D Pose Estimation of an In-Hand Object using Vision and Tactile Sensor Data
墨绿色的摆渡人
文章深度学习物体姿势估计系统
VisuoTactile6DPoseEstimationofanIn-HandObjectusingVisionandTactileSensorData文章概括摘要1.介绍2.背景3.网络结构A.视觉触觉传感器融合B.姿势估计器C.损失函数4.数据集的生成A.触觉传感器不变的姿态估计B.数据收集设置C.数据集特征5.实验A.网络训练设置B.硬件部署6.结果A.量化评估B.定性评价C.消融研究D.与
- 多传感器融合SLAM数学学习历程
SensorFusion
多传感器融合学习
多传感器融合SLAM数学学习历程>>>流形和流形空间(姿态)https://blog.csdn.net/professor_Xie/article/details/131911894fast-lio带着问题看知识欧式空间和流形空间的区别和联系?基本结构:欧式空间是我们熟悉的传统三维空间,其中的点由三个实数(x、y、z)表示,具有直角坐标系。在欧式空间中,可以进行常规的线性运算和加法操作。而流形空间
- 革命性突破!全新多传感器辅助惯性导航系统,效能与精准度并肩
3DCV
自动驾驶人工智能机器学习计算机视觉深度学习
作者:小柠檬|来源:3DCV在公众号「3DCV」后台,回复「原论文」获取论文和项目地址大家好,给大家推荐一种高效、强大的多传感器辅助惯性导航系统,具有在线校准功能,能够融合IMU、摄像头、LiDAR、GPS/GNSS和车轮传感器。使用案例:VINS/VIO、GPS-INS、LINS/LIO、用于定位和建图的多传感器融合(SLAM)。原文链接:革命性突破!全新多传感器辅助惯性导航系统,效能与精准度并
- AI加速器与机器学习算法:协同设计与进化
江太翁
人工智能人工智能机器学习算法
作者|ShashankPrasanna翻译|胡燕君此刻,你应该是在电脑或手机上看这篇文章。不管怎样,这些机器都属于现代计算机,它们都有中央处理器(CPU)和其他为特定功能服务的专用芯片,例如显卡、声卡、网卡、传感器融合等。处理特定任务时,专用处理器往往比通用CPU更快更高效。计算机发展早期,CPU都会和专用处理器配合使用。1970年代的8位和16位CPU需要依赖软件来模拟浮点指令,因此执行浮点运算
- 点云从入门到精通技术详解100篇-基于多传感器融合的紧耦合 SLAM 算法
格图素书
自动驾驶人工智能机器学习
目录前言多传感器融合的SLAM相关设备及技术介绍2.1三维刚体运动模型2.1.1坐标系变换
- Autoware 开源框架车辆运动学建模推导
秃头队长
Autoware
学习Autoware开源框架的资料整理,侵删!开源自动驾驶框架Autoware介绍Autoware包含以下模块:1.定位:通过结合GNSS和IMU传感器的3D地图和SLAM算法来实现定位2.检测:使用具有传感器融合算法和深度神经网络的摄像机以及LiDAR3.预测和规划:基于概率机器人技术和基于规则的系统,部分还使用深度神经网络4.控制:Autoware向车辆输出的速度和角速度的扭曲量以上四个模块覆
- 自动驾驶感知-预测-决策-规划-控制学习(3):感知方向文献阅读笔记
棉花糖永远滴神
自动驾驶学习笔记
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、文章主题二、摘要阅读1.名词理解①点云是什么?②二维图像分割器③轻量化卷积网络提取特征④单模态表达和多模态特征融合的区别⑤基于ROS的多传感器融合感知⑥TensorRT工具2.总结摘要三、绪论解析1.首先分析了车道线检测方面有三类工作2.又分析了三维目标检测研究的三类工作3.综述各章节内容四、硬件与软件设计1.总体方案
- 高精地图新基线 | SuperFusion:多层次Lidar-Camera融合,nuScenes SOTA!
自动驾驶之心
点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取点击进入→自动驾驶之心【多传感器融合】技术交流群后台回复【SuperFusion】获取本文代码!!!摘要环境的高精(HD)语义地图生成是自动驾驶的一个重要组成部分。现有方法通过融合不同的传感器模式(如激光雷达和相机),在这项任务中取得了良好的性能。然而,目前的工作基于原始数据或网络特征级融合,仅考虑短距离高精地图生成,限制了其部署到
- 多传感器融合学习笔记
AI视觉网奇
3D视觉学习笔记
目录BevFusionBEVFormer(ECCV2022)eagerMOT利用2D+3D数据多目标跟踪Download3Dand2Ddetections,whichonestodownloaddependsonwhatyouwanttorun:BevFusion最小的模型530多mBevFusion是一种多传感器融合技术,它可以将来自不同传感器(如LiDAR和相机)的数据融合到一个统一的BEV表
- 车载毫米波雷达及芯片新趋势研究3--自动驾驶、国产替代与外延场景需求快速增长打开市场空间
奔袭的算法工程师
行业资讯自动驾驶人工智能机器学习目标检测深度学习
3.1多传感器融合路线优势将不断扩大,引发更多毫米波雷达及芯片需求纯视觉自动驾驶路线是通过以光学摄像头为传感器结合大量算法训练以模拟人类视觉驾驶为逻辑的自动驾驶方案。纯视觉方案“轻硬件、重软件”,由其采用的摄像头成本较低,纯视觉方案的整体硬件成本较低。多传感器融合自动驾驶路线的原理是通过多种类型传感器共同收集路况信息和数据,并通过算法自动分析和综合完成自动驾驶决策的方案。多传感器融合路线能够集
- 【多传感器融合导航论文阅读】
今天我刷leetcode了吗
论文阅读学习方法
多传感器融合导航论文积累知识点总结因子图一致因子图文献阅读笔记[IF18.6]知识点总结因子图FactorGraph是概率图的一种,是对函数因子分解的表示图,一般内含两种节点,变量节点和函数节点。因子图存在着:两类节点:变量节点和对应的函数节点变量节点所代表的变量是函数节点的自变量。同类节点之间没有边直接相连。一致因子图一致性指的是在该框架中能够保持一致性地更新变量的值,使得整个概率图模型中的变量
- 【论文笔记】Learned Fusion: 3D Object Detection using Calibration-Free Transformer Feature Fusion
byzy
#激光雷达与图像融合论文阅读目标检测计算机视觉自动驾驶深度学习
原文链接:https://arxiv.org/abs/2312.090821.引言目前的3D目标检测一来传感器的校准信息。这种情况下,校准信息需要及其精确,但在产品尺度上,获取高质量校准信息是很困难的(需要逐传感器校准,且运行过程中可能会变化)。本文基于Transformer,提出无需校准信息的传感器融合方法。3.方法从基于Transformer的方法中直接移除校准信息会导致训练困难。3.1Tra
- UBX M8T-10 DSP开发和NMEA解析
汪汪星河
算法
特殊名词:l惯性导航(DR)解决方案采用惯性传感器(陀螺仪和加速计)来辅助GNSS定位技术。l无约束惯性导航(UDR)解决方案持续测量与监测车辆加速度及其方向变化,再通过传感器融合技术将测量数据与GNSS数据进行整合,实时计算并优化分析出更精准的位置结果。l车载惯性导航(ADR)解决方案在此基础上则更进一步,可将车辆轮速脉冲传感器的数据进行整合,实现更高精度的位置计算结果。UbxM8:Ublox-
- 《LIO-SAM阅读笔记》1.IMU预积分模块
Jiqiang_z
机器人linux笔记
前言:LIO-SAM是一个多传感器融合的紧耦合SLAM框架,融合的传感器类型有雷达、IMU和GPS,其中雷达和IMU在LIO-SAM框架中必须使用的。LIO-SAM的优化策略采用了GTSAM库,GTSAM库采用了因子图的优化方法,其提供了一些列C++的外部接口,以便用户方便传入参数等进行优化。特别的是GTSAM库专门单独设计关于IMU计算与优化的接口。IMU预积分模块在LIO-SAM源码中写在了i
- 当我们在讨论多模态融合时?我们究竟在讨论什么?最新多源融合综述!
自动驾驶之心
点击下方卡片,关注“自动驾驶之心”公众号ADAS巨卷干货,即可获取今天自动驾驶之心很荣幸邀请到Xizhu来分享自动驾驶最新的多源传感器融合综述!如果您有相关工作需要分享,请在文末联系我们!>>点击进入→自动驾驶之心【多传感器融合】技术交流群论文作者|Xizhu编辑|自动驾驶之心很荣幸来分享我们的多源数据融合综述~这篇综述文章所关注的核心问题是自动驾驶系统中的多源数据融合技术。多源数据融合对自动驾驶
- 机器人制作开源方案 | “校园卫士”-智能巡检机器人
Robotway
机器人开源
作者:程训聪、柳贺凯、赵坤峰、叶智超、高仁伟单位:黑龙江科技大学指导老师:邵文冕、李杨1.摘要针对校园巡检需求设计机器人本体结构,借助Arduino作为控制核心的巡检机器人控制系统构建方法研究了巡检机器人在校园环境下的导航、控制、多传感器融合等问题。结果表明:该套系统的研发有效解决了校园巡检机器人的攀爬障碍、火灾检测、智能人脸检测、佩戴口罩识别等问题,通过采用分布式结构,保障了整个系统的实时性,实
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方