Java实现C4.5决策树

1.定义数据结构

根据决策树的形状,我将决策树的数据结构定义如下。lastFeatureValue表示经过某个特征值的筛选到达的节点,featureName表示答案或者信息增益最大的特征。childrenNodeList表示经过这个特征的若干个值分类后得到的几个节点。

public class Node
{
    /**
     * 到达此节点的特征值
     */
    public String lastFeatureValue;
    /**
     * 此节点的特征名称或答案
     */
    public String featureName;
    /**
     * 此节点的分类子节点
     */
    public List childrenNodeList = new ArrayList();
}

2.定义输入数据格式

@feature
outlook,temperature,humidity,windy,play

@data
sunny,hot,high,FALSE,no
sunny,hot,high,TRUE,no
overcast,hot,high,FALSE,yes
rainy,mild,high,FALSE,yes
rainy,cool,normal,FALSE,yes
rainy,cool,normal,TRUE,no
overcast,cool,normal,TRUE,yes
sunny,mild,high,FALSE,no
sunny,cool,normal,FALSE,yes
rainy,mild,normal,FALSE,yes
sunny,mild,normal,TRUE,yes
overcast,mild,high,TRUE,yes
overcast,hot,normal,FALSE,yes
rainy,mild,high,TRUE,no

3.存储输入数据

在代码中,特征和特征值用List来存储,数据用Map来存储。

 //特征列表
    public static List featureList = new ArrayList();
    // 特征值列表
    public static List> featureValueTableList = new ArrayList>();
    //得到全局数据
    public static Map> tableMap = new HashMap>();

4.初始化输入数据 

 /**
     * 初始化数据
     * 
     * @param file
     */
    public static void readOriginalData(File file)
    {
        int index = 0;
        try
        {
            FileReader fr = new FileReader(file);
            BufferedReader br = new BufferedReader(fr);
            String line;
            while ((line = br.readLine()) != null)
            {
                // 得到特征名称
                if (line.startsWith("@feature"))
                {
                    line = br.readLine();
                    String[] row = line.split(",");
                    for (String s : row)
                    {
                        featureList.add(s.trim());
                    }
                }
                else if (line.startsWith("@data"))
                {
                    while ((line = br.readLine()) != null)
                    {
                        if (line.equals(""))
                        {
                            continue;
                        }
                        String[] row = line.split(",");
                        if (row.length != featureList.size())
                        {
                            throw new Exception("列表数据和特征数目不一致");
                        }
                        List tempList = new ArrayList();
                        for (String s : row)
                        {
                            if (s.trim().equals(""))
                            {
                                throw new Exception("列表数据不能为空");
                            }
                            tempList.add(s.trim());
                        }
                        tableMap.put(index++, tempList);
                    }

                    // 遍历tableMap得到属性值列表
                    Map> valueSetMap = new HashMap>();
                    for (int i = 0; i < featureList.size(); i++)
                    {
                        valueSetMap.put(i, new HashSet());
                    }
                    for (Map.Entry> entry : tableMap.entrySet())
                    {
                        List dataList = entry.getValue();
                        for (int i = 0; i < dataList.size(); i++)
                        {
                            valueSetMap.get(i).add(dataList.get(i));
                        }
                    }
                    for (Map.Entry> entry : valueSetMap.entrySet())
                    {
                        List valueList = new ArrayList();
                        for (String s : entry.getValue())
                        {
                            valueList.add(s);
                        }
                        featureValueTableList.add(valueList);
                    }
                }
                else
                {
                    continue;
                }
            }
            br.close();
        }
        catch (IOException e1)
        {
            e1.printStackTrace();
        }
        catch (Exception e)
        {
            e.printStackTrace();
        }
    }

5.计算给定数据集的香农熵

 /**
     * 计算熵
     * 
     * @param dataSetList
     * @return
     */
    public static double calculateEntropy(List dataSetList)
    {
        if (dataSetList == null || dataSetList.size() <= 0)
        {
            return 0;
        }
        // 得到结果
        int resultIndex = tableMap.get(dataSetList.get(0)).size() - 1;
        Map valueMap = new HashMap();
        for (Integer id : dataSetList)
        {
            String value = tableMap.get(id).get(resultIndex);
            Integer num = valueMap.get(value);
            if (num == null || num == 0)
            {
                num = 0;
            }
            valueMap.put(value, num + 1);
        }
        double entropy = 0;
        for (Map.Entry entry : valueMap.entrySet())
        {
            double prob = entry.getValue() * 1.0 / dataSetList.size();
            entropy -= prob * Math.log10(prob) / Math.log10(2);
        }
        return entropy;
    }

6.按照给定特征划分数据集

 /**
     * 对一个数据集进行划分
     * 
     * @param dataSetList
     *            待划分的数据集
     * @param featureIndex
     *            第几个特征(特征下标,从0开始)
     * @param value
     *            得到某个特征值的数据集
     * @return
     */
    public static List splitDataSet(List dataSetList, int featureIndex, String value)
    {
        List resultList = new ArrayList();
        for (Integer id : dataSetList)
        {
            if (tableMap.get(id).get(featureIndex).equals(value))
            {
                resultList.add(id);
            }
        }
        return resultList;
    }

7.选择最好的数据集划分方式

 /**
     * 在指定的几个特征中选择一个最佳特征(信息增益最大)用于划分数据集
     * 
     * @param dataSetList
     * @return 返回最佳特征的下标
     */
    public static int chooseBestFeatureToSplit(List dataSetList, List featureIndexList)
    {
        double baseEntropy = calculateEntropy(dataSetList);
        double bestInformationGain = 0;
        int bestFeature = -1;

        // 循环遍历所有特征
        for (int temp = 0; temp < featureIndexList.size() - 1; temp++)
        {
            int i = featureIndexList.get(temp);

            // 得到特征集合
            List featureValueList = new ArrayList();
            for (Integer id : dataSetList)
            {
                String value = tableMap.get(id).get(i);
                featureValueList.add(value);
            }
            Set featureValueSet = new HashSet();
            featureValueSet.addAll(featureValueList);

            // 得到此分类下的熵
            double newEntropy = 0;
            for (String featureValue : featureValueSet)
            {
                List subDataSetList = splitDataSet(dataSetList, i, featureValue);
                double probability = subDataSetList.size() * 1.0 / dataSetList.size();
                newEntropy += probability * calculateEntropy(subDataSetList);
            }
            // 得到信息增益
            double informationGain = baseEntropy - newEntropy;
            // 得到信息增益最大的特征下标
            if (informationGain > bestInformationGain)
            {
                bestInformationGain = informationGain;
                bestFeature = temp;
            }
        }
        return bestFeature;
    }

8.多数表决不确定结果

  /**
     * 多数表决得到出现次数最多的那个值
     * 
     * @param dataSetList
     * @return
     */
    public static String majorityVote(List dataSetList)
    {
        // 得到结果
        int resultIndex = tableMap.get(dataSetList.get(0)).size() - 1;
        Map valueMap = new HashMap();
        for (Integer id : dataSetList)
        {
            String value = tableMap.get(id).get(resultIndex);
            Integer num = valueMap.get(value);
            if (num == null || num == 0)
            {
                num = 0;
            }
            valueMap.put(value, num + 1);
        }

        int maxNum = 0;
        String value = "";

        for (Map.Entry entry : valueMap.entrySet())
        {
            if (entry.getValue() > maxNum)
            {
                maxNum = entry.getValue();
                value = entry.getKey();
            }
        }

        return value;
    }

9.创建决策树

 /**
     * 创建决策树
     * 
     * @param dataSetList
     *            数据集
     * @param featureIndexList
     *            可用的特征列表
     * @param lastFeatureValue
     *            到达此节点的上一个特征值
     * @return
     */
    public static Node createDecisionTree(List dataSetList, List featureIndexList, String lastFeatureValue)
    {
        // 如果只有一个值的话,则直接返回叶子节点
        int valueIndex = featureIndexList.get(featureIndexList.size() - 1);//标签索引
        // 选择第一个值
        String firstValue = tableMap.get(dataSetList.get(0)).get(valueIndex);//标签值
        int firstValueNum = 0;
        for (Integer id : dataSetList)
        {
            if (firstValue.equals(tableMap.get(id).get(valueIndex)))
            {
                firstValueNum++;
            }
        }
        if (firstValueNum == dataSetList.size())//所有数据属于同一类
        {
            Node node = new Node();
            node.lastFeatureValue = lastFeatureValue;
            node.featureName = firstValue;
            node.childrenNodeList = null;
            return node;
        }

        // 遍历完所有特征时特征值还没有完全相同,返回多数表决的结果
        if (featureIndexList.size() == 1)//就剩下标签了
        {
            Node node = new Node();
            node.lastFeatureValue = lastFeatureValue;
            node.featureName = majorityVote(dataSetList);
            node.childrenNodeList = null;
            return node;
        }

        // 获得信息增益最大的特征
        int bestFeatureIndex = chooseBestFeatureToSplit(dataSetList, featureIndexList);
        // 得到此特征在全局的下标
        int realFeatureIndex = featureIndexList.get(bestFeatureIndex);
        String bestFeatureName = featureList.get(realFeatureIndex);

        // 构造决策树
        Node node = new Node();
        node.lastFeatureValue = lastFeatureValue;
        node.featureName = bestFeatureName;

        // 得到所有特征值的集合
        List featureValueList = featureValueTableList.get(realFeatureIndex);

        // 删除此特征
        featureIndexList.remove(bestFeatureIndex);

        // 遍历特征所有值,划分数据集,然后递归得到子节点
        for (String fv : featureValueList)
        {
            // 得到子数据集
            List subDataSetList = splitDataSet(dataSetList, realFeatureIndex, fv);
            // 如果子数据集为空,则使用多数表决给一个答案。
            if (subDataSetList == null || subDataSetList.size() <= 0)
            {
                Node childNode = new Node();
                childNode.lastFeatureValue = fv;
                childNode.featureName = majorityVote(dataSetList);
                childNode.childrenNodeList = null;
                node.childrenNodeList.add(childNode);
                break;
            }
            // 添加子节点
            Node childNode = createDecisionTree(subDataSetList, featureIndexList, fv);
            node.childrenNodeList.add(childNode);
        }

        return node;
    }

10.使用决策树对测试数据进行预测 

 /**
     * 输入测试数据得到决策树的预测结果
     * @param decisionTree 决策树
     * @param featureList 特征列表
     * @param testDataList 测试数据
     * @return
     */
    public static String getDTAnswer(Node decisionTree, List featureList, List testDataList)
    {
        if (featureList.size() - 1 != testDataList.size())
        {
            System.out.println("输入数据不完整");
            return "ERROR";
        }

        while (decisionTree != null)
        {
            // 如果孩子节点为空,则返回此节点答案.
            if (decisionTree.childrenNodeList == null || decisionTree.childrenNodeList.size() <= 0)
            {
                return decisionTree.featureName;
            }
            // 孩子节点不为空,则判断特征值找到子节点
            for (int i = 0; i < featureList.size() - 1; i++)
            {
                // 找到当前特征下标
                if (featureList.get(i).equals(decisionTree.featureName))
                {
                    // 得到测试数据特征值
                    String featureValue = testDataList.get(i);
                    // 在子节点中找到含有此特征值的节点
                    Node childNode = null;
                    for (Node cn : decisionTree.childrenNodeList)
                    {
                        if (cn.lastFeatureValue.equals(featureValue))
                        {
                            childNode = cn;
                            break;
                        }
                    }
                    // 如果没有找到此节点,则说明训练集中没有到这个节点的特征值
                    if (childNode == null)
                    {
                        System.out.println("没有找到此特征值的数据");
                        return "ERROR";
                    }

                    decisionTree = childNode;
                    break;
                }
            }
        }
        return "ERROR";
    }

11.测试结果



    outlook
    
        rainy
        windy
        
            FALSE
            yes
        
        
            TRUE
            no
        
    
    
        sunny
        humidity
        
            normal
            yes
        
        
            high
            no
        
    
    
        overcast
        yes
    

转换成图是这样的。

此时输入数据进行测试。

rainy,cool,high,TRUE
  • 1

得到结果为:

判断结果:no

 

你可能感兴趣的:(java,算法,机器学习,java,决策树)