Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境

  • 1. 安装GPU显卡驱动
    • 1.1 安装前
    • 1.2 安装过程
      • 1.2.1 打开终端,查看推荐安装的驱动
      • 1.2.2 搜索并打开 软件和更新,安装驱动
    • 1.3 安装完成
  • 2. 安装 CUDA
    • 2.1 下载官方CUDA
    • 2.2 运行官网安装指令
    • 2.3 添加环境变量
    • 2.4 输入nvcc -V查看版本号
    • **2.5:为什么nvcc -V 与nvidia-smi不一致
  • 3. 安装 cudnn
    • 3.1. 下载cudnn
    • 3.2 验证
    • 3.3cuda和cudnn之间的关系
  • 4. 安装PyTorch
    • 4.1 安装
    • 5.2 测试安装是否成功
  • 5. 参考

1. 安装GPU显卡驱动

  • 检查驱动是否安装成功:
		sudo nvidia-smi
  • 不用命令行,直接用图形化界面即可:“软件和更新”窗口安装

1.1 安装前

首先,确认你是有GPU显卡的:lspci | grep -i nvidia
在这里插入图片描述
未安装前,显示的驱动如下:(由于我没有截图,这里借别人的图一用)

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第1张图片

1.2 安装过程

1.2.1 打开终端,查看推荐安装的驱动

打开终端,输入ubuntu-drivers devices

其中标记 recommended 的,即为推荐安装的驱动

如下所示,就是“nvidia-driver-470”

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第2张图片当然我们可以根据recommended安装,也可以根据自己的实际需求安装,我就是根据需求安装的

1.2.2 搜索并打开 软件和更新,安装驱动

  • 打开软件和更新
  • 选择附加驱动
  • 选择需要安装的驱动
  • 点击应用更改
  • 等待,然后安装完毕

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第3张图片

1.3 安装完成

重启以后,在设置里面可以看到已经成果安装RTX3060驱动了,检查是否安装成功:nvidia-smi

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第4张图片

2. 安装 CUDA

2.1 下载官方CUDA

打开英伟达官网 下载官方cuda

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第5张图片

此处我下载的是cuda 11.6.0 版本,并选择相应配置,复制指令至终端下载

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第6张图片
下载界面我还是忘了截图,在借别人的图一用:

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第7张图片

2.2 运行官网安装指令

要根据自己的版本运行命令

sudo sh cuda_11.6.0_510.39.01_linux.run

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第8张图片
Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第9张图片

2.3 添加环境变量

gedit ~/.bashrc打开文件,在文件结尾添加如下语句:

export PATH="/usr/local/cuda-11.6/bin:$PATH"
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.6/lib64
export LIBRARY_PATH=$LIBRARY_PATH:/usr/local/cuda-11.6/lib

Tips:在export PATH里请一定按路径是在""中的格式,如果是其他格式的画,后面用nvcc -V查看版本时只会显示旧版本的CUDA,不会显示自己下载的版本!!!!

保存、更新环境变量:source ~/.bashrc

重启

2.4 输入nvcc -V查看版本号

在这里插入图片描述

**2.5:为什么nvcc -V 与nvidia-smi不一致

因为cuda有两种API,分为运行API和驱动API,只要驱动API版本高于运行时API就没关系。nvidia-smi显示的是驱动API,nvcc -V显示的是运行时API。

3. 安装 cudnn

3.1. 下载cudnn

进入官网(需要登录,选择Sign in) ,寻找合适的 cudnn 版本,下载对应版本的cudnn Local Installer for Ubuntu18.04 x86_64 (Deb),

cd download_path
sudo dpkg -i ccudnn-local-repo-ubuntu1804-8.4.0.27_1.0-1_amd64.deb#激活本地文件,这个要根据自己的下载版本决定
#(这个在执行完上面的命令后会自动给你下面的命令,复制就好,不用无脑copy下面的一行代码)
sudo cp /var/cudnn-local-repo-ubuntu2004-8.4.1.50/cudnn-local-E3EC4A60-keyring.gpg /usr/share/keyrings/ # 导入CUDA GPG Key(
sudo apt-get update
#据自己的下载版本决定
sudo apt-get install libcudnn8=8.4.1.50-1+cuda11.6 #通过tab自动补全,安装runtime library
sudo apt-get install libcudnn8-dev=8.4.1.50-1+cuda11.6 #通过tab自动补全,安装developer library
sudo apt-get install libcudnn8-samples=8.4.1.50-1+cuda11.6 #通过tab

3.2 验证

CUDNN的安装包中有sample code,可用于测试。
先将sample code拷贝至可写入路径,如$HOME

cp -r /usr/src/cudnn_samples_v8/ $HOME 

#进入到mnist文件夹中,并进行编译

cd cudnn_samples_v8/mnistCUDNN/
make clean && make
./mnistCUDNN

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第10张图片
看到test passed,表明安装完成!!

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第11张图片

3.3cuda和cudnn之间的关系

【CUDA与cuDNN】,cuda是螺丝刀,cudnn是扳手,这两个工具在GPU加速运算中都是需要的,安装cuda并不会附带cudnn,两个需要分别安装。

4. 安装PyTorch

4.1 安装

到Pytorch官网选择对应的系统和cuda版本,复制Run this Command中的cuda install命令,进入终端,输入conda create -n yolov50 python==3.8,这样就创建了一个名叫yolov5的虚拟环境,再输入source activate yolov5(用conda莫名会打不开,这里就用source打开),进入虚拟环境。

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第12张图片

  • 在安装的时候网络时好时不好,有的时候会报错,我在网上看用官网的源会比较慢,让用清华的源,但是我一添加,不只是慢了,而是直接报连接超时的错误。。。后面所幸不修改.condarc硬着头皮用官方的conda下载,中间断断续续几次后竟然ok了,很奇怪

看到下图的几个done时,就表明下载完成了:

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第13张图片

5.2 测试安装是否成功

  • 使用命令查看torch版本
python
import torch
torch.__version__
  • 用命令查看是否可加速:
print(torch.cuda.is_available())
  • 使用一个矩阵运算测试是否能正常运行:
import torch as t
x = t.rand(5,3)
y = t.rand(5,3)
if t.cuda.is_available():
    x = x.cuda()
    y = y.cuda()
    print(x+y)

Ubuntu18.04+Nvidia RTX 3060+Pytorch配置GPU环境_第14张图片

至此,安装完成~~~

5. 参考

  1. https://blog.csdn.net/qq_35494379/article/details/105603832
  2. https://blog.csdn.net/qq_43644413/article/details/124899366
  3. https://blog.csdn.net/weixin_44780789/article/details/127034349
  4. https://blog.csdn.net/lavinia_chen007/article/details/125217721

你可能感兴趣的:(Liunx,ubuntu,linux)