时间序列数据集:UCR Time Series Classification Archive【共128个数据集】

UCR是时间序列数据集,并且每个数据集样本都带有样本类别标签,目前是时间序列挖掘领域重要的开源数据集资源。

UCR Time Series Classification Archive数据集

在2018版的官网页面上可以直接下载整个128个数据集,下图中的红框1可以阅读PDF文档,红框2是下载按钮。

一、Data Format

Each of the data sets comes in two parts, a TRAIN partition and a TEST partition.
For example, for the Fungi data set we have two files, Fungi_TEST.tsv and Fungi_TRAIN.tsv
The two files will be in the same format but are generally of different sizes.
The files are in the standard ASCII format that can be read directly by most tools/languages.
For example, to read the data of Fungi data set into MATLAB, we can type…

>> TRAIN = load(‘Fungi_TRAIN.tsv'); 
>> TEST  = load(‘Fungi_TEST.tsv' ); 

…at the command line.

There is one time series exemplar per row. The first value in the row is the class label (an integer between 1 and the number of classes). The rest of the row are the data sample values. The order of time series exemplar carry no special meaning and is in most cases random. A small number of data sets have class label starting from 0 or -1 by legacy.

时间序列数据集:UCR Time Series Classification Archive【共128个数据集】_第1张图片

官网首页如下:

ID Type Name Train Test Class Length ED (w=0) DTW (learned_w) DTW (w=100) Default rate Data donor/editor
1 Image Adiac 390 391 37 176 0.3887 0.3913 (3) 0.3964 0.9591 A. Jalba
2 Image ArrowHead 36 175 3 251 0.2000 0.2000 (0) 0.2971 0.6057 L. Ye & E. Keogh
3 Spectro Beef 30 30 5 470 0.3333 0.3333 (0) 0.3667 0.8000 K. Kemsley & A. Bagnall
4 Image BeetleFly 20 20 2 512 0.2500 0.3000 (7) 0.3000 0.5000 J. Hills & A. Bagnall
5 Image BirdChicken 20 20 2 512 0.4500 0.3000 (6) 0.2500 0.5000 J. Hills & A. Bagnall
6 Sensor Car 60 60 4 577 0.2667 0.2333 (1) 0.2667 0.6833 J. Gao
7 Simulated CBF 30 900 3 128 0.1478 0.0044 (11) 0.0033 0.6644 N. Saito
8 Sensor ChlorineConcentration 467 3840 3 166 0.3500 0.3500 (0) 0.3516 0.4674 L. Li & C. Faloutsos
9 Sensor CinCECGTorso 40 1380 4 1639 0.1029 0.0696 (1) 0.3493 0.7464 physionet.org
10 Spectro Coffee 28 28 2 286 0.0000 0.0000 (0) 0.0000 0.4643 K, Kemsley & A. Bagnall
11 Device Computers 250 250 2 720 0.4240 0.3800 (12) 0.3000 0.5000 J. Lines & A. Bagnall
12 Motion CricketX 390 390 12 300 0.4231 0.2282 (10) 0.2462 0.8974 A. Mueen & E. Keogh
13 Motion CricketY 390 390 12 300 0.4333 0.2410 (17) 0.2564 0.9051 A. Mueen & E. Keogh
14 Motion CricketZ 390 390 12 300 0.4128 0.2538 (5) 0.2462 0.8974 A. Mueen & E. Keogh
15 Image DiatomSizeReduction 16 306 4 345 0.0654 0.0654 (0) 0.0327 0.6928 ADIAC project
16 Image DistalPhalanxOutlineAgeGroup 400 139 3 80 0.3741 0.3741 (0) 0.2302 0.5324 L. Davis & A. Bagnall
17 Image DistalPhalanxOutlineCorrect 600 276 2 80 0.2826 0.2754 (1) 0.2826 0.4167 L. Davis & A. Bagnall
18 Image DistalPhalanxTW 400 139 6 80 0.3669 0.3669 (0) 0.4101 0.6978 L. Davis & A. Bagnall
19 Sensor Earthquakes 322 139 2 512 0.2878 0.2734 (6) 0.2806 0.2518 A. Bagnall
20 ECG ECG200 100 100 2 96 0.1200 0.1200 (0) 0.2300 0.3600 R. Olszewski
21 ECG ECG5000 500 4500 5 140 0.0751 0.0749 (1) 0.0756 0.4162 Y. Chen & E. Keogh
22 ECG ECGFiveDays 23 861 2 136 0.2033 0.2033 (0) 0.2323 0.4971 physionet.org, Y. Chen & E. Keogh
23 Device ElectricDevices 8926 7711 7 96 0.4492 0.3806 (14) 0.3988 0.7463 A. Bagnall & J. Lines
24 Image FaceAll 560 1690 14 131 0.2864 0.1917 (3) 0.1923 0.8302 X. Xi & E. Keogh
25 Image FaceFour 24 88 4 350 0.2159 0.1136 (2) 0.1705 0.7045 A. Ratanamahatana & E. Keogh
26 Image FacesUCR 200 2050 14 131 0.2307 0.0878 (12) 0.0951 0.8566 X. Xi & E. Keogh
27 Image FiftyWords 450 455 50 270 0.3692 0.2418 (6) 0.3099 0.8747 T. Rath & R. Manmatha
28 Image Fish 175 175 7 463 0.2171 0.1543 (4) 0.1771 0.8343 D. Lee
29 Sensor FordA 3601 1320 2 500 0.3348 0.3091 (1) 0.4455 0.4841 A. Bagnall
30 Sensor FordB 3636 810 2 500 0.3938 0.3926 (1) 0.3802 0.4951 A. Bagnall
31 Motion GunPoint 50 150 2 150 0.0867 0.0867 (0) 0.0933 0.4933 A. Ratanamahatana & E. Keogh
32 Spectro Ham 109 105 2 431 0.4000 0.4000 (0) 0.5333 0.4857 K. Kemsley & A. Bagnall
33 Image HandOutlines 1000 370 2 2709 0.1378 0.1378 (0) 0.1189 0.3595 L. Davis & A. Bagnall
34 Motion Haptics 155 308 5 1092 0.6299 0.5877 (2) 0.6234 0.7825 J. Brady
35 Image Herring 64 64 2 512 0.4844 0.4688 (5) 0.4688 0.4063 J. Maap & A. Bagnall
36 Motion InlineSkate 100 550 7 1882 0.6582 0.6127 (14) 0.6164 0.8164 F. Morchen & O. Hoos
37 Sensor InsectWingbeatSound 220 1980 11 256 0.4384 0.4152 (1) 0.6449 0.9091 Y. Chen & E. Keogh
38 Sensor ItalyPowerDemand 67 1029 2 24 0.0447 0.0447 (0) 0.0496 0.4985 JJ van Wijk, E. Keogh & L. Wi
39 Device LargeKitchenAppliances 375 375 3 720 0.5067 0.2053 (94) 0.2053 0.6667 J. Lines & A. Bagnall
40 Sensor Lightning2 60 61 2 637 0.2459 0.1311 (6) 0.1311 0.4590 D. Eads
41 Sensor Lightning7 70 73 7 319 0.4247 0.2877 (5) 0.2740 0.7397 D. Eads
42 Simulated Mallat 55 2345 8 1024 0.0857 0.0857 (0) 0.0661 0.8729 M. Jeong & S. Mallat
43 Spectro Meat 60 60 3 448 0.0667 0.0667 (0) 0.0667 0.6667 K. Kemlsey & A. Bagnall
44 Image MedicalImages 381 760 10 99 0.3158 0.2526 (20) 0.2632 0.4855 J. Felipe & C. Traina
45 Image MiddlePhalanxOutlineAgeGroup 400 154 3 80 0.4805 0.4805 (0) 0.5000 0.4286 L. Davis & A. Bagnall
46 Image MiddlePhalanxOutlineCorrect 600 291 2 80 0.2337 0.2337 (0) 0.3024 0.4296 L. Davis & A. Bagnall
47 Image MiddlePhalanxTW 399 154 6 80 0.4870 0.4935 (3) 0.4935 0.7143 L. Davis & A. Bagnall
48 Sensor MoteStrain 20 1252 2 84 0.1214 0.1342 (1) 0.1653 0.4609 C. Guestrin & J. Sun
49 ECG NonInvasiveFetalECGThorax1 1800 1965 42 750 0.1710 0.1893 (1) 0.2097 0.9705 physionet.org, B. Hu & E. Keogh
50 ECG NonInvasiveFetalECGThorax2 1800 1965 42 750 0.1201 0.1290 (1) 0.1354 0.9705 physionet.org, B. Hu & E. Keogh
51 Spectro OliveOil 30 30 4 570 0.1333 0.1333 (0) 0.1667 0.6000 K. Kemsley & A. Bagnall
52 Image OSULeaf 200 242 6 427 0.4793 0.3884 (7) 0.4091 0.7727 A. Gandhi
53 Image PhalangesOutlinesCorrect 1800 858 2 80 0.2389 0.2389 (0) 0.2716 0.3869 A. Bagnall
54 Sensor Phoneme 214 1896 39 1024 0.8908 0.7727 (14) 0.7716 0.8871 H. Hamooni & A. Mueen
55 Sensor Plane 105 105 7 144 0.0381 0.0000 (5) 0.0000 0.8000 J. Gao
56 Image ProximalPhalanxOutlineAgeGroup 400 205 3 80 0.2146 0.2146 (0) 0.1951 0.5122 L. Davis & A. Bagnall
57 Image ProximalPhalanxOutlineCorrect 600 291 2 80 0.1924 0.2096 (1) 0.2165 0.3162 L. Davis & A. Bagnall
58 Image ProximalPhalanxTW 400 205 6 80 0.2927 0.2439 (2) 0.2439 0.6488 L. Davis & A. Bagnall
59 Device RefrigerationDevices 375 375 3 720 0.6053 0.5600 (8) 0.5360 0.6667 J. Lines & A. Bagnall
60 Device ScreenType 375 375 3 720 0.6400 0.5893 (17) 0.6027 0.6667 J. Lines & A. Bagnall
61 Simulated ShapeletSim 20 180 2 500 0.4611 0.3000 (3) 0.3500 0.5000 J. Hills & A. Bagnall
62 Image ShapesAll 600 600 60 512 0.2483 0.1980 (4) 0.2317 0.9833 J. Hills & A. Bagnall
63 Device SmallKitchenAppliances 375 375 3 720 0.6587 0.3280 (15) 0.3573 0.6667 J. Lines & A. Bagnall
64 Sensor SonyAIBORobotSurface1 20 601 2 70 0.3045 0.3045 (0) 0.2745 0.4293 D. Vail, M. Velso & E. Keogh
65 Sensor SonyAIBORobotSurface2 27 953 2 65 0.1406 0.1406 (0) 0.1689 0.3830 D. Vail, M. Velso & E. Keogh
66 Sensor StarLightCurves 1000 8236 3 1024 0.1512 0.0947 (16) 0.0934 0.4228 P. Protopapas, E. Keogh & L. Wei
67 Spectro Strawberry 613 370 2 235 0.0541 0.0541 (0) 0.0595 0.3568 K. Kemsley & A. Bagnall
68 Image SwedishLeaf 500 625 15 128 0.2112 0.1536 (2) 0.2080 0.9216 O. Soderkvist
69 Image Symbols 25 995 6 398 0.1005 0.0623 (8) 0.0503 0.8211 E. Keogh & J. Brady
70 Simulated SyntheticControl 300 300 6 60 0.1200 0.0167 (6) 0.0067 0.8333 R. Alcock & Y. Manolopoulos
71 Motion ToeSegmentation1 40 228 2 277 0.3202 0.2500 (8) 0.2281 0.4737 A. Bagnall, L. Ye & E. Keogh
72 Motion ToeSegmentation2 36 130 2 343 0.1923 0.0923 (5) 0.1615 0.1846 A. Bagnall, L. Ye & E. Keogh
73 Sensor Trace 100 100 4 275 0.2400 0.0100 (3) 0.0000 0.7100 D. Roverso
74 ECG TwoLeadECG 23 1139 2 82 0.2529 0.1317 (4) 0.0957 0.4996 physionet.org & E. Keogh
75 Simulated TwoPatterns 1000 4000 4 128 0.0932 0.0015 (4) 0.0000 0.7412 P. Geurts
76 Motion UWaveGestureLibraryAll 896 3582 8 945 0.0519 0.0343 (4) 0.1083 0.8716 A. Bagnall & J. Liu
77 Motion UWaveGestureLibraryX 896 3582 8 315 0.2607 0.2267 (4) 0.2725 0.8716 J. Liu
78 Motion UWaveGestureLibraryY 896 3582 8 315 0.3384 0.3009 (4) 0.3660 0.8716 J. Liu
79 Motion UWaveGestureLibraryZ 896 3582 8 315 0.3504 0.3222 (6) 0.3417 0.8716 J. Liu
80 Sensor Wafer 1000 6164 2 152 0.0045 0.0045 (1) 0.0201 0.1079 R. Olszewski
81 Spectro Wine 57 54 2 234 0.3889 0.3889 (0) 0.4259 0.5000 K. Kemsley & A. Bagnall
82 Image WordSynonyms 267 638 25 270 0.3824 0.2618 (9) 0.3511 0.7806 T. Rath & R. Manmatha
83 Motion Worms 181 77 5 900 0.5455 0.4675 (9) 0.4156 0.5714 A. Bagnall
84 Motion WormsTwoClass 181 77 2 900 0.3896 0.4156 (7) 0.3766 0.4286 A. Bagnall
85 Image Yoga 300 3000 2 426 0.1697 0.1560 (7) 0.1637 0.4643 L. Wei & E. Keogh
86 Device ACSF1 100 100 10 1460 0.4600 0.3800 (4) 0.3600 0.9000 P. Schafer
87 Sensor AllGestureWiimoteX 300 700 10 Vary 0.4843 0.2829 (14) 0.2843 0.9000 J. Guna
88 Sensor AllGestureWiimoteY 300 700 10 Vary 0.4314 0.2700 (9) 0.2714 0.9000 J. Guna
89 Sensor AllGestureWiimoteZ 300 700 10 Vary 0.5457 0.3486 (11) 0.3571 0.9000 J. Guna
90 Simulated BME 30 150 3 128 0.1667 0.0200 (4) 0.1000 0.6667 Joseph Fourier University
91 Traffic Chinatown 20 343 2 24 0.0466 0.0466 (0) 0.0437 0.2741 H.A. Dau
92 Image Crop 7200 16800 24 46 0.2883 0.2883 (0) 0.3348 0.9583 F. Petitjean
93 Sensor DodgerLoopDay 78 80 7 288 0.4500 0.4125 (1) 0.5000 0.8375 C.-C. M. Yeh
94 Sensor DodgerLoopGame 20 138 2 288 0.1159 0.0725 (1) 0.1232 0.4783 C.-C. M. Yeh
95 Sensor DodgerLoopWeekend 20 138 2 288 0.0145 0.0217 (1) 0.0507 0.2609 C.-C. M. Yeh
96 EOG EOGHorizontalSignal 362 362 12 1250 0.5829 0.5249 (1) 0.4972 0.9144 E. Keogh & H. A. Dau
97 EOG EOGVerticalSignal 362 362 12 1250 0.5580 0.5249 (2) 0.5525 0.9144 E. Keogh & H. A. Dau
98 Spectro EthanolLevel 504 500 4 1751 0.7260 0.7180 (1) 0.7240 0.7480 A. Bagnall
99 Sensor FreezerRegularTrain 150 2850 2 301 0.1951 0.0930 (1) 0.1011 0.5000 REFIT project
100 Sensor FreezerSmallTrain 28 2850 2 301 0.3242 0.3242 (0) 0.2411 0.5000 REFIT project
101 HRM Fungi 18 186 18 201 0.1774 0.1774 (0) 0.1613 0.8978 W. Fonzi
102 Trajectory GestureMidAirD1 208 130 26 Vary 0.4231 0.3615 (5) 0.4308 0.9615 H. A. Dau
103 Trajectory GestureMidAirD2 208 130 26 Vary 0.5077 0.4000 (6) 0.3923 0.9615 H. A. Dau
104 Trajectory GestureMidAirD3 208 130 26 Vary 0.6538 0.6231 (1) 0.6769 0.9615 H. A. Dau
105 Sensor GesturePebbleZ1 132 172 6 Vary 0.2674 0.1744 (2) 0.2093 0.8140 I. Maglogiannis
106 Sensor GesturePebbleZ2 146 158 6 Vary 0.3291 0.2215 (6) 0.3291 0.8101 I. Maglogiannis
107 Motion GunPointAgeSpan 135 316 2 150 0.1013 0.0348 (3) 0.0823 0.4937 A. Ratanamahatana & E. Keogh
108 Motion GunPointMaleVersusFemale 135 316 2 150 0.0253 0.0253 (0) 0.0032 0.4747 A. Ratanamahatana & E. Keogh
109 Motion GunPointOldVersusYoung 136 315 2 150 0.0476 0.0349 (4) 0.1619 0.4762 A. Ratanamahatana & E. Keogh
110 Device HouseTwenty 40 119 2 2000 0.3361 0.0588 (33) 0.0756 0.4202 E. Keogh & S. Gharghabi
111 EPG InsectEPGRegularTrain 62 249 3 601 0.3213 0.1727 (11) 0.1285 0.5261 E. Keogh & S. Gharghabi
112 EPG InsectEPGSmallTrain 17 249 3 601 0.3373 0.3052 (1) 0.2651 0.5261 E. Keogh & S. Gharghabi
113 Traffic MelbournePedestrian 1194 2439 10 24 0.1525 0.1845 (1) 0.2091 0.8995 H.A. Dau
114 Image MixedShapesRegularTrain 500 2425 5 1024 0.1027 0.0911 (4) 0.1584 0.7303 E. Keogh
115 Image MixedShapesSmallTrain 100 2425 5 1024 0.1645 0.1674 (7) 0.2202 0.7303 E. Keogh
116 Sensor PickupGestureWiimoteZ 50 50 10 Vary 0.4400 0.3400 (17) 0.3400 0.9000 J. Guna
117 Hemodynamics PigAirwayPressure 104 208 52 2000 0.9423 0.9038 (1) 0.8942 0.9808 M. Guillame-Bert
118 Hemodynamics PigArtPressure 104 208 52 2000 0.8750 0.8029 (1) 0.7548 0.9808 M. Guillame-Bert
119 Hemodynamics PigCVP 104 208 52 2000 0.9183 0.8413 (11) 0.8462 0.9808 M. Guillame-Bert
120 Device PLAID 537 537 11 Vary 0.4767 0.1657 (12) 0.1639 0.8380 P. Schafer
121 Power PowerCons 180 180 2 144 0.0667 0.0778 (3) 0.1222 0.5000 EDF R&D, France
122 Spectrum Rock 20 50 4 2844 0.1600 0.1600 (0) 0.4000 0.5800 Y. Zhu
123 Spectrum SemgHandGenderCh2 300 600 2 1500 0.2383 0.1550 (1) 0.1983 0.3500 C.-C. M. Yeh
124 Spectrum SemgHandMovementCh2 450 450 6 1500 0.6311 0.3622 (1) 0.4156 0.8333 C.-C. M. Yeh
125 Spectrum SemgHandSubjectCh2 450 450 5 1500 0.5956 0.2000 (3) 0.2733 0.8000 C.-C. M. Yeh
126 Sensor ShakeGestureWiimoteZ 50 50 10 Vary 0.4000 0.1600 (6) 0.1400 0.9000 J. Guna
127 Simulated SmoothSubspace 150 150 3 15 0.0933 0.0533 (1) 0.1733 0.6667 X. Huang
128 Simulated UMD 36 144 3 150 0.2361 0.0278 (6) 0.0069 0.6667 Joseph Fourier University

数据集下载后文件夹中已经分割了训练和测试集,就是上图中的Train和Test,Class代表了这个数据集包含了几类,Length代表了数据集样本的长度(每个数据集中所有序列都是等长的)。后面的ED代表了欧式距离,DTW就是动态时间规整算法,DTW(learned_w)代表了窗口约束DTW算法(DTW的改进算法)。这几个算法都是空间距离度量算法,下面的误差率是在1-NN分类算法下,结合ED、DTW及其改进距离度量算法的分类误差率。相关文章很多,可以见下面这篇期刊:




参考资料:
UCR Time Series Classification Archive 是个什么数据集?
超全必看!开源时间序列数据集整理

你可能感兴趣的:(数据集,时间序列,数据集,UCR)