UCR是时间序列数据集,并且每个数据集样本都带有样本类别标签,目前是时间序列挖掘领域重要的开源数据集资源。
UCR Time Series Classification Archive数据集
在2018版的官网页面上可以直接下载整个128个数据集,下图中的红框1可以阅读PDF文档,红框2是下载按钮。
Each of the data sets comes in two parts, a TRAIN partition and a TEST partition.
For example, for the Fungi data set we have two files, Fungi_TEST.tsv and Fungi_TRAIN.tsv
The two files will be in the same format but are generally of different sizes.
The files are in the standard ASCII format that can be read directly by most tools/languages.
For example, to read the data of Fungi data set into MATLAB, we can type…
>> TRAIN = load(‘Fungi_TRAIN.tsv');
>> TEST = load(‘Fungi_TEST.tsv' );
…at the command line.
There is one time series exemplar per row. The first value in the row is the class label (an integer between 1 and the number of classes). The rest of the row are the data sample values. The order of time series exemplar carry no special meaning and is in most cases random. A small number of data sets have class label starting from 0 or -1 by legacy.
官网首页如下:
ID | Type | Name | Train | Test | Class | Length | ED (w=0) | DTW (learned_w) | DTW (w=100) | Default rate | Data donor/editor |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Image | Adiac | 390 | 391 | 37 | 176 | 0.3887 | 0.3913 (3) | 0.3964 | 0.9591 | A. Jalba |
2 | Image | ArrowHead | 36 | 175 | 3 | 251 | 0.2000 | 0.2000 (0) | 0.2971 | 0.6057 | L. Ye & E. Keogh |
3 | Spectro | Beef | 30 | 30 | 5 | 470 | 0.3333 | 0.3333 (0) | 0.3667 | 0.8000 | K. Kemsley & A. Bagnall |
4 | Image | BeetleFly | 20 | 20 | 2 | 512 | 0.2500 | 0.3000 (7) | 0.3000 | 0.5000 | J. Hills & A. Bagnall |
5 | Image | BirdChicken | 20 | 20 | 2 | 512 | 0.4500 | 0.3000 (6) | 0.2500 | 0.5000 | J. Hills & A. Bagnall |
6 | Sensor | Car | 60 | 60 | 4 | 577 | 0.2667 | 0.2333 (1) | 0.2667 | 0.6833 | J. Gao |
7 | Simulated | CBF | 30 | 900 | 3 | 128 | 0.1478 | 0.0044 (11) | 0.0033 | 0.6644 | N. Saito |
8 | Sensor | ChlorineConcentration | 467 | 3840 | 3 | 166 | 0.3500 | 0.3500 (0) | 0.3516 | 0.4674 | L. Li & C. Faloutsos |
9 | Sensor | CinCECGTorso | 40 | 1380 | 4 | 1639 | 0.1029 | 0.0696 (1) | 0.3493 | 0.7464 | physionet.org |
10 | Spectro | Coffee | 28 | 28 | 2 | 286 | 0.0000 | 0.0000 (0) | 0.0000 | 0.4643 | K, Kemsley & A. Bagnall |
11 | Device | Computers | 250 | 250 | 2 | 720 | 0.4240 | 0.3800 (12) | 0.3000 | 0.5000 | J. Lines & A. Bagnall |
12 | Motion | CricketX | 390 | 390 | 12 | 300 | 0.4231 | 0.2282 (10) | 0.2462 | 0.8974 | A. Mueen & E. Keogh |
13 | Motion | CricketY | 390 | 390 | 12 | 300 | 0.4333 | 0.2410 (17) | 0.2564 | 0.9051 | A. Mueen & E. Keogh |
14 | Motion | CricketZ | 390 | 390 | 12 | 300 | 0.4128 | 0.2538 (5) | 0.2462 | 0.8974 | A. Mueen & E. Keogh |
15 | Image | DiatomSizeReduction | 16 | 306 | 4 | 345 | 0.0654 | 0.0654 (0) | 0.0327 | 0.6928 | ADIAC project |
16 | Image | DistalPhalanxOutlineAgeGroup | 400 | 139 | 3 | 80 | 0.3741 | 0.3741 (0) | 0.2302 | 0.5324 | L. Davis & A. Bagnall |
17 | Image | DistalPhalanxOutlineCorrect | 600 | 276 | 2 | 80 | 0.2826 | 0.2754 (1) | 0.2826 | 0.4167 | L. Davis & A. Bagnall |
18 | Image | DistalPhalanxTW | 400 | 139 | 6 | 80 | 0.3669 | 0.3669 (0) | 0.4101 | 0.6978 | L. Davis & A. Bagnall |
19 | Sensor | Earthquakes | 322 | 139 | 2 | 512 | 0.2878 | 0.2734 (6) | 0.2806 | 0.2518 | A. Bagnall |
20 | ECG | ECG200 | 100 | 100 | 2 | 96 | 0.1200 | 0.1200 (0) | 0.2300 | 0.3600 | R. Olszewski |
21 | ECG | ECG5000 | 500 | 4500 | 5 | 140 | 0.0751 | 0.0749 (1) | 0.0756 | 0.4162 | Y. Chen & E. Keogh |
22 | ECG | ECGFiveDays | 23 | 861 | 2 | 136 | 0.2033 | 0.2033 (0) | 0.2323 | 0.4971 | physionet.org, Y. Chen & E. Keogh |
23 | Device | ElectricDevices | 8926 | 7711 | 7 | 96 | 0.4492 | 0.3806 (14) | 0.3988 | 0.7463 | A. Bagnall & J. Lines |
24 | Image | FaceAll | 560 | 1690 | 14 | 131 | 0.2864 | 0.1917 (3) | 0.1923 | 0.8302 | X. Xi & E. Keogh |
25 | Image | FaceFour | 24 | 88 | 4 | 350 | 0.2159 | 0.1136 (2) | 0.1705 | 0.7045 | A. Ratanamahatana & E. Keogh |
26 | Image | FacesUCR | 200 | 2050 | 14 | 131 | 0.2307 | 0.0878 (12) | 0.0951 | 0.8566 | X. Xi & E. Keogh |
27 | Image | FiftyWords | 450 | 455 | 50 | 270 | 0.3692 | 0.2418 (6) | 0.3099 | 0.8747 | T. Rath & R. Manmatha |
28 | Image | Fish | 175 | 175 | 7 | 463 | 0.2171 | 0.1543 (4) | 0.1771 | 0.8343 | D. Lee |
29 | Sensor | FordA | 3601 | 1320 | 2 | 500 | 0.3348 | 0.3091 (1) | 0.4455 | 0.4841 | A. Bagnall |
30 | Sensor | FordB | 3636 | 810 | 2 | 500 | 0.3938 | 0.3926 (1) | 0.3802 | 0.4951 | A. Bagnall |
31 | Motion | GunPoint | 50 | 150 | 2 | 150 | 0.0867 | 0.0867 (0) | 0.0933 | 0.4933 | A. Ratanamahatana & E. Keogh |
32 | Spectro | Ham | 109 | 105 | 2 | 431 | 0.4000 | 0.4000 (0) | 0.5333 | 0.4857 | K. Kemsley & A. Bagnall |
33 | Image | HandOutlines | 1000 | 370 | 2 | 2709 | 0.1378 | 0.1378 (0) | 0.1189 | 0.3595 | L. Davis & A. Bagnall |
34 | Motion | Haptics | 155 | 308 | 5 | 1092 | 0.6299 | 0.5877 (2) | 0.6234 | 0.7825 | J. Brady |
35 | Image | Herring | 64 | 64 | 2 | 512 | 0.4844 | 0.4688 (5) | 0.4688 | 0.4063 | J. Maap & A. Bagnall |
36 | Motion | InlineSkate | 100 | 550 | 7 | 1882 | 0.6582 | 0.6127 (14) | 0.6164 | 0.8164 | F. Morchen & O. Hoos |
37 | Sensor | InsectWingbeatSound | 220 | 1980 | 11 | 256 | 0.4384 | 0.4152 (1) | 0.6449 | 0.9091 | Y. Chen & E. Keogh |
38 | Sensor | ItalyPowerDemand | 67 | 1029 | 2 | 24 | 0.0447 | 0.0447 (0) | 0.0496 | 0.4985 | JJ van Wijk, E. Keogh & L. Wi |
39 | Device | LargeKitchenAppliances | 375 | 375 | 3 | 720 | 0.5067 | 0.2053 (94) | 0.2053 | 0.6667 | J. Lines & A. Bagnall |
40 | Sensor | Lightning2 | 60 | 61 | 2 | 637 | 0.2459 | 0.1311 (6) | 0.1311 | 0.4590 | D. Eads |
41 | Sensor | Lightning7 | 70 | 73 | 7 | 319 | 0.4247 | 0.2877 (5) | 0.2740 | 0.7397 | D. Eads |
42 | Simulated | Mallat | 55 | 2345 | 8 | 1024 | 0.0857 | 0.0857 (0) | 0.0661 | 0.8729 | M. Jeong & S. Mallat |
43 | Spectro | Meat | 60 | 60 | 3 | 448 | 0.0667 | 0.0667 (0) | 0.0667 | 0.6667 | K. Kemlsey & A. Bagnall |
44 | Image | MedicalImages | 381 | 760 | 10 | 99 | 0.3158 | 0.2526 (20) | 0.2632 | 0.4855 | J. Felipe & C. Traina |
45 | Image | MiddlePhalanxOutlineAgeGroup | 400 | 154 | 3 | 80 | 0.4805 | 0.4805 (0) | 0.5000 | 0.4286 | L. Davis & A. Bagnall |
46 | Image | MiddlePhalanxOutlineCorrect | 600 | 291 | 2 | 80 | 0.2337 | 0.2337 (0) | 0.3024 | 0.4296 | L. Davis & A. Bagnall |
47 | Image | MiddlePhalanxTW | 399 | 154 | 6 | 80 | 0.4870 | 0.4935 (3) | 0.4935 | 0.7143 | L. Davis & A. Bagnall |
48 | Sensor | MoteStrain | 20 | 1252 | 2 | 84 | 0.1214 | 0.1342 (1) | 0.1653 | 0.4609 | C. Guestrin & J. Sun |
49 | ECG | NonInvasiveFetalECGThorax1 | 1800 | 1965 | 42 | 750 | 0.1710 | 0.1893 (1) | 0.2097 | 0.9705 | physionet.org, B. Hu & E. Keogh |
50 | ECG | NonInvasiveFetalECGThorax2 | 1800 | 1965 | 42 | 750 | 0.1201 | 0.1290 (1) | 0.1354 | 0.9705 | physionet.org, B. Hu & E. Keogh |
51 | Spectro | OliveOil | 30 | 30 | 4 | 570 | 0.1333 | 0.1333 (0) | 0.1667 | 0.6000 | K. Kemsley & A. Bagnall |
52 | Image | OSULeaf | 200 | 242 | 6 | 427 | 0.4793 | 0.3884 (7) | 0.4091 | 0.7727 | A. Gandhi |
53 | Image | PhalangesOutlinesCorrect | 1800 | 858 | 2 | 80 | 0.2389 | 0.2389 (0) | 0.2716 | 0.3869 | A. Bagnall |
54 | Sensor | Phoneme | 214 | 1896 | 39 | 1024 | 0.8908 | 0.7727 (14) | 0.7716 | 0.8871 | H. Hamooni & A. Mueen |
55 | Sensor | Plane | 105 | 105 | 7 | 144 | 0.0381 | 0.0000 (5) | 0.0000 | 0.8000 | J. Gao |
56 | Image | ProximalPhalanxOutlineAgeGroup | 400 | 205 | 3 | 80 | 0.2146 | 0.2146 (0) | 0.1951 | 0.5122 | L. Davis & A. Bagnall |
57 | Image | ProximalPhalanxOutlineCorrect | 600 | 291 | 2 | 80 | 0.1924 | 0.2096 (1) | 0.2165 | 0.3162 | L. Davis & A. Bagnall |
58 | Image | ProximalPhalanxTW | 400 | 205 | 6 | 80 | 0.2927 | 0.2439 (2) | 0.2439 | 0.6488 | L. Davis & A. Bagnall |
59 | Device | RefrigerationDevices | 375 | 375 | 3 | 720 | 0.6053 | 0.5600 (8) | 0.5360 | 0.6667 | J. Lines & A. Bagnall |
60 | Device | ScreenType | 375 | 375 | 3 | 720 | 0.6400 | 0.5893 (17) | 0.6027 | 0.6667 | J. Lines & A. Bagnall |
61 | Simulated | ShapeletSim | 20 | 180 | 2 | 500 | 0.4611 | 0.3000 (3) | 0.3500 | 0.5000 | J. Hills & A. Bagnall |
62 | Image | ShapesAll | 600 | 600 | 60 | 512 | 0.2483 | 0.1980 (4) | 0.2317 | 0.9833 | J. Hills & A. Bagnall |
63 | Device | SmallKitchenAppliances | 375 | 375 | 3 | 720 | 0.6587 | 0.3280 (15) | 0.3573 | 0.6667 | J. Lines & A. Bagnall |
64 | Sensor | SonyAIBORobotSurface1 | 20 | 601 | 2 | 70 | 0.3045 | 0.3045 (0) | 0.2745 | 0.4293 | D. Vail, M. Velso & E. Keogh |
65 | Sensor | SonyAIBORobotSurface2 | 27 | 953 | 2 | 65 | 0.1406 | 0.1406 (0) | 0.1689 | 0.3830 | D. Vail, M. Velso & E. Keogh |
66 | Sensor | StarLightCurves | 1000 | 8236 | 3 | 1024 | 0.1512 | 0.0947 (16) | 0.0934 | 0.4228 | P. Protopapas, E. Keogh & L. Wei |
67 | Spectro | Strawberry | 613 | 370 | 2 | 235 | 0.0541 | 0.0541 (0) | 0.0595 | 0.3568 | K. Kemsley & A. Bagnall |
68 | Image | SwedishLeaf | 500 | 625 | 15 | 128 | 0.2112 | 0.1536 (2) | 0.2080 | 0.9216 | O. Soderkvist |
69 | Image | Symbols | 25 | 995 | 6 | 398 | 0.1005 | 0.0623 (8) | 0.0503 | 0.8211 | E. Keogh & J. Brady |
70 | Simulated | SyntheticControl | 300 | 300 | 6 | 60 | 0.1200 | 0.0167 (6) | 0.0067 | 0.8333 | R. Alcock & Y. Manolopoulos |
71 | Motion | ToeSegmentation1 | 40 | 228 | 2 | 277 | 0.3202 | 0.2500 (8) | 0.2281 | 0.4737 | A. Bagnall, L. Ye & E. Keogh |
72 | Motion | ToeSegmentation2 | 36 | 130 | 2 | 343 | 0.1923 | 0.0923 (5) | 0.1615 | 0.1846 | A. Bagnall, L. Ye & E. Keogh |
73 | Sensor | Trace | 100 | 100 | 4 | 275 | 0.2400 | 0.0100 (3) | 0.0000 | 0.7100 | D. Roverso |
74 | ECG | TwoLeadECG | 23 | 1139 | 2 | 82 | 0.2529 | 0.1317 (4) | 0.0957 | 0.4996 | physionet.org & E. Keogh |
75 | Simulated | TwoPatterns | 1000 | 4000 | 4 | 128 | 0.0932 | 0.0015 (4) | 0.0000 | 0.7412 | P. Geurts |
76 | Motion | UWaveGestureLibraryAll | 896 | 3582 | 8 | 945 | 0.0519 | 0.0343 (4) | 0.1083 | 0.8716 | A. Bagnall & J. Liu |
77 | Motion | UWaveGestureLibraryX | 896 | 3582 | 8 | 315 | 0.2607 | 0.2267 (4) | 0.2725 | 0.8716 | J. Liu |
78 | Motion | UWaveGestureLibraryY | 896 | 3582 | 8 | 315 | 0.3384 | 0.3009 (4) | 0.3660 | 0.8716 | J. Liu |
79 | Motion | UWaveGestureLibraryZ | 896 | 3582 | 8 | 315 | 0.3504 | 0.3222 (6) | 0.3417 | 0.8716 | J. Liu |
80 | Sensor | Wafer | 1000 | 6164 | 2 | 152 | 0.0045 | 0.0045 (1) | 0.0201 | 0.1079 | R. Olszewski |
81 | Spectro | Wine | 57 | 54 | 2 | 234 | 0.3889 | 0.3889 (0) | 0.4259 | 0.5000 | K. Kemsley & A. Bagnall |
82 | Image | WordSynonyms | 267 | 638 | 25 | 270 | 0.3824 | 0.2618 (9) | 0.3511 | 0.7806 | T. Rath & R. Manmatha |
83 | Motion | Worms | 181 | 77 | 5 | 900 | 0.5455 | 0.4675 (9) | 0.4156 | 0.5714 | A. Bagnall |
84 | Motion | WormsTwoClass | 181 | 77 | 2 | 900 | 0.3896 | 0.4156 (7) | 0.3766 | 0.4286 | A. Bagnall |
85 | Image | Yoga | 300 | 3000 | 2 | 426 | 0.1697 | 0.1560 (7) | 0.1637 | 0.4643 | L. Wei & E. Keogh |
86 | Device | ACSF1 | 100 | 100 | 10 | 1460 | 0.4600 | 0.3800 (4) | 0.3600 | 0.9000 | P. Schafer |
87 | Sensor | AllGestureWiimoteX | 300 | 700 | 10 | Vary | 0.4843 | 0.2829 (14) | 0.2843 | 0.9000 | J. Guna |
88 | Sensor | AllGestureWiimoteY | 300 | 700 | 10 | Vary | 0.4314 | 0.2700 (9) | 0.2714 | 0.9000 | J. Guna |
89 | Sensor | AllGestureWiimoteZ | 300 | 700 | 10 | Vary | 0.5457 | 0.3486 (11) | 0.3571 | 0.9000 | J. Guna |
90 | Simulated | BME | 30 | 150 | 3 | 128 | 0.1667 | 0.0200 (4) | 0.1000 | 0.6667 | Joseph Fourier University |
91 | Traffic | Chinatown | 20 | 343 | 2 | 24 | 0.0466 | 0.0466 (0) | 0.0437 | 0.2741 | H.A. Dau |
92 | Image | Crop | 7200 | 16800 | 24 | 46 | 0.2883 | 0.2883 (0) | 0.3348 | 0.9583 | F. Petitjean |
93 | Sensor | DodgerLoopDay | 78 | 80 | 7 | 288 | 0.4500 | 0.4125 (1) | 0.5000 | 0.8375 | C.-C. M. Yeh |
94 | Sensor | DodgerLoopGame | 20 | 138 | 2 | 288 | 0.1159 | 0.0725 (1) | 0.1232 | 0.4783 | C.-C. M. Yeh |
95 | Sensor | DodgerLoopWeekend | 20 | 138 | 2 | 288 | 0.0145 | 0.0217 (1) | 0.0507 | 0.2609 | C.-C. M. Yeh |
96 | EOG | EOGHorizontalSignal | 362 | 362 | 12 | 1250 | 0.5829 | 0.5249 (1) | 0.4972 | 0.9144 | E. Keogh & H. A. Dau |
97 | EOG | EOGVerticalSignal | 362 | 362 | 12 | 1250 | 0.5580 | 0.5249 (2) | 0.5525 | 0.9144 | E. Keogh & H. A. Dau |
98 | Spectro | EthanolLevel | 504 | 500 | 4 | 1751 | 0.7260 | 0.7180 (1) | 0.7240 | 0.7480 | A. Bagnall |
99 | Sensor | FreezerRegularTrain | 150 | 2850 | 2 | 301 | 0.1951 | 0.0930 (1) | 0.1011 | 0.5000 | REFIT project |
100 | Sensor | FreezerSmallTrain | 28 | 2850 | 2 | 301 | 0.3242 | 0.3242 (0) | 0.2411 | 0.5000 | REFIT project |
101 | HRM | Fungi | 18 | 186 | 18 | 201 | 0.1774 | 0.1774 (0) | 0.1613 | 0.8978 | W. Fonzi |
102 | Trajectory | GestureMidAirD1 | 208 | 130 | 26 | Vary | 0.4231 | 0.3615 (5) | 0.4308 | 0.9615 | H. A. Dau |
103 | Trajectory | GestureMidAirD2 | 208 | 130 | 26 | Vary | 0.5077 | 0.4000 (6) | 0.3923 | 0.9615 | H. A. Dau |
104 | Trajectory | GestureMidAirD3 | 208 | 130 | 26 | Vary | 0.6538 | 0.6231 (1) | 0.6769 | 0.9615 | H. A. Dau |
105 | Sensor | GesturePebbleZ1 | 132 | 172 | 6 | Vary | 0.2674 | 0.1744 (2) | 0.2093 | 0.8140 | I. Maglogiannis |
106 | Sensor | GesturePebbleZ2 | 146 | 158 | 6 | Vary | 0.3291 | 0.2215 (6) | 0.3291 | 0.8101 | I. Maglogiannis |
107 | Motion | GunPointAgeSpan | 135 | 316 | 2 | 150 | 0.1013 | 0.0348 (3) | 0.0823 | 0.4937 | A. Ratanamahatana & E. Keogh |
108 | Motion | GunPointMaleVersusFemale | 135 | 316 | 2 | 150 | 0.0253 | 0.0253 (0) | 0.0032 | 0.4747 | A. Ratanamahatana & E. Keogh |
109 | Motion | GunPointOldVersusYoung | 136 | 315 | 2 | 150 | 0.0476 | 0.0349 (4) | 0.1619 | 0.4762 | A. Ratanamahatana & E. Keogh |
110 | Device | HouseTwenty | 40 | 119 | 2 | 2000 | 0.3361 | 0.0588 (33) | 0.0756 | 0.4202 | E. Keogh & S. Gharghabi |
111 | EPG | InsectEPGRegularTrain | 62 | 249 | 3 | 601 | 0.3213 | 0.1727 (11) | 0.1285 | 0.5261 | E. Keogh & S. Gharghabi |
112 | EPG | InsectEPGSmallTrain | 17 | 249 | 3 | 601 | 0.3373 | 0.3052 (1) | 0.2651 | 0.5261 | E. Keogh & S. Gharghabi |
113 | Traffic | MelbournePedestrian | 1194 | 2439 | 10 | 24 | 0.1525 | 0.1845 (1) | 0.2091 | 0.8995 | H.A. Dau |
114 | Image | MixedShapesRegularTrain | 500 | 2425 | 5 | 1024 | 0.1027 | 0.0911 (4) | 0.1584 | 0.7303 | E. Keogh |
115 | Image | MixedShapesSmallTrain | 100 | 2425 | 5 | 1024 | 0.1645 | 0.1674 (7) | 0.2202 | 0.7303 | E. Keogh |
116 | Sensor | PickupGestureWiimoteZ | 50 | 50 | 10 | Vary | 0.4400 | 0.3400 (17) | 0.3400 | 0.9000 | J. Guna |
117 | Hemodynamics | PigAirwayPressure | 104 | 208 | 52 | 2000 | 0.9423 | 0.9038 (1) | 0.8942 | 0.9808 | M. Guillame-Bert |
118 | Hemodynamics | PigArtPressure | 104 | 208 | 52 | 2000 | 0.8750 | 0.8029 (1) | 0.7548 | 0.9808 | M. Guillame-Bert |
119 | Hemodynamics | PigCVP | 104 | 208 | 52 | 2000 | 0.9183 | 0.8413 (11) | 0.8462 | 0.9808 | M. Guillame-Bert |
120 | Device | PLAID | 537 | 537 | 11 | Vary | 0.4767 | 0.1657 (12) | 0.1639 | 0.8380 | P. Schafer |
121 | Power | PowerCons | 180 | 180 | 2 | 144 | 0.0667 | 0.0778 (3) | 0.1222 | 0.5000 | EDF R&D, France |
122 | Spectrum | Rock | 20 | 50 | 4 | 2844 | 0.1600 | 0.1600 (0) | 0.4000 | 0.5800 | Y. Zhu |
123 | Spectrum | SemgHandGenderCh2 | 300 | 600 | 2 | 1500 | 0.2383 | 0.1550 (1) | 0.1983 | 0.3500 | C.-C. M. Yeh |
124 | Spectrum | SemgHandMovementCh2 | 450 | 450 | 6 | 1500 | 0.6311 | 0.3622 (1) | 0.4156 | 0.8333 | C.-C. M. Yeh |
125 | Spectrum | SemgHandSubjectCh2 | 450 | 450 | 5 | 1500 | 0.5956 | 0.2000 (3) | 0.2733 | 0.8000 | C.-C. M. Yeh |
126 | Sensor | ShakeGestureWiimoteZ | 50 | 50 | 10 | Vary | 0.4000 | 0.1600 (6) | 0.1400 | 0.9000 | J. Guna |
127 | Simulated | SmoothSubspace | 150 | 150 | 3 | 15 | 0.0933 | 0.0533 (1) | 0.1733 | 0.6667 | X. Huang |
128 | Simulated | UMD | 36 | 144 | 3 | 150 | 0.2361 | 0.0278 (6) | 0.0069 | 0.6667 | Joseph Fourier University |
数据集下载后文件夹中已经分割了训练和测试集,就是上图中的Train和Test,Class代表了这个数据集包含了几类,Length代表了数据集样本的长度(每个数据集中所有序列都是等长的)。后面的ED代表了欧式距离,DTW就是动态时间规整算法,DTW(learned_w)代表了窗口约束DTW算法(DTW的改进算法)。这几个算法都是空间距离度量算法,下面的误差率是在1-NN分类算法下,结合ED、DTW及其改进距离度量算法的分类误差率。相关文章很多,可以见下面这篇期刊:
参考资料:
UCR Time Series Classification Archive 是个什么数据集?
超全必看!开源时间序列数据集整理