kmeans++聚类生成anchors

kmeans++聚类生成anchors

说明

使用yolo系列通常需要通过kmeans聚类算法生成anchors,
但kmeans算法本身具有一定的局限性,聚类结果容易受初始值选取影响。
因此通过改进原kmeans_for_anchors.py实现 kmeans++聚类生成anchors。

具体实现如下:

import glob
import xml.etree.ElementTree as ET
from tqdm import tqdm
import numpy as np


def cas_iou(box, cluster):
    x = np.minimum(cluster[:, 0], box[0])
    y = np.minimum(cluster[:, 1], box[1])

    intersection = x * y
    area1 = box[0] * box[1]

    area2 = cluster[:, 0] * cluster[:, 1]
    iou = intersection / (area1 + area2 - intersection)

    return iou


def avg_iou(box, cluster):
    return np.mean([np.max(cas_iou(box[i], cluster)) for i in range(box.shape[0])])


def bboxesOverRation(bboxesA, bboxesB):
    """
    功能等同于matlab的函数bboxesOverRation
    bboxesA:M*4 array,形如[x,y,w,h]排布
    bboxesB: N*4 array,形如[x,y,w,h]排布
    """
    bboxesA = np.array(bboxesA.astype('float'))
    bboxesB = np.array(bboxesB.astype('float'))
    M = bboxesA.shape[0]
    N = bboxesB.shape[0]

    areasA = bboxesA[:, 2] * bboxesA[:, 3]
    areasB = bboxesB[:, 2] * bboxesB[:, 3]

    xA = bboxesA[:, 0] + bboxesA[:, 2]
    yA = bboxesA[:, 1] + bboxesA[:, 3]
    xyA = np.stack([xA, yA]).transpose()
    xyxyA = np.concatenate((bboxesA[:, :2], xyA), axis=1)

    xB = bboxesB[:, 0] + bboxesB[:, 2]
    yB = bboxesB[:, 1] + bboxesB[:, 3]
    xyB = np.stack([xB, yB]).transpose()
    xyxyB = np.concatenate((bboxesB[:, :2], xyB), axis=1)

    iouRatio = np.zeros((M, N))
    for i in range(M):
        for j in range(N):
            x1 = max(xyxyA[i, 0], xyxyB[j, 0]);
            x2 = min(xyxyA[i, 2], xyxyB[j, 2]);
            y1 = max(xyxyA[i, 1], xyxyB[j, 1]);
            y2 = min(xyxyA[i, 3], xyxyB[j, 3]);
            Intersection = max(0, (x2 - x1)) * max(0, (y2 - y1));
            Union = areasA[i] + areasB[j] - Intersection;
            iouRatio[i, j] = Intersection / Union;
    return iouRatio


def load_data(path):
    data = []
    # 对于每一个xml都寻找box
    for xml_file in tqdm(glob.glob('{}/*xml'.format(path))):
        tree = ET.parse(xml_file)
        height = int(tree.findtext('./size/height'))
        width = int(tree.findtext('./size/width'))
        if height <= 0 or width <= 0:
            continue

        # 对于每一个目标都获得它的宽高
        for obj in tree.iter('object'):
            xmin = int(float(obj.findtext('bndbox/xmin'))) / width
            ymin = int(float(obj.findtext('bndbox/ymin'))) / height
            xmax = int(float(obj.findtext('bndbox/xmax'))) / width
            ymax = int(float(obj.findtext('bndbox/ymax'))) / height

            xmin = np.float64(xmin)
            ymin = np.float64(ymin)
            xmax = np.float64(xmax)
            ymax = np.float64(ymax)
            # 得到宽高
            x = xmin + 0.5 * (xmax - xmin)
            y = ymin + 0.5 * (ymax - ymin)
            data.append([x, y, xmax - xmin, ymax - ymin])
    return np.array(data)


def estimateAnchorBoxes(trainingData, numAnchors=9):
    '''
    功能:kmeans++算法估计anchor,类似于matlab函数estimateAnchorBoxes,当trainingData
    数据量较大时候,自写的kmeans迭代循环效率较低,matlab的estimateAnchorBoxes得出
    anchors较快,但meanIOU较低,然后乘以实际box的ratio即可。此算法由于优化是局部,易陷入局部最优解,结果不一致属正常
    [email protected]
    Example:
        import scipy.io as scipo
        data = scipo.loadmat(r'D:\Matlab_files\trainingData.mat')
        trainingData = data['temp']

        meanIoUList = []
        for numAnchor in np.arange(1,16):
            anchorBoxes,meanIoU = estimateAnchorBoxes(trainingData,numAnchors=numAnchor)
            meanIoUList.append(meanIoU)
        plt.plot(np.arange(1,16),meanIoUList,'ro-')
        plt.ylabel("Mean IoU")
        plt.xlabel("Number of Anchors")
        plt.title("Number of Anchors vs. Mean IoU")

    Parameters
    ----------
    trainingData : numpy 类型
        形如[x,y,w,h]排布,M*4大小二维矩阵
    numAnchors : int, optional
        估计的anchors数量. The default is 9.

    Returns
    -------
    anchorBoxes : numpy类型
        形如[w,h]排布,N*2大小矩阵.
    meanIoU : scalar 标量
        DESCRIPTION.

    '''

    numsObver = trainingData.shape[0]
    xyArray = np.zeros((numsObver, 2))
    trainingData[:, 0:2] = xyArray
    assert (numsObver >= numAnchors)

    # kmeans++
    # init
    centroids = []  # 初始化中心,kmeans++
    centroid_index = np.random.choice(numsObver, 1)
    centroids.append(trainingData[centroid_index])
    while len(centroids) < numAnchors:
        minDistList = []
        for box in trainingData:
            box = box.reshape((-1, 4))
            minDist = 1
            for centroid in centroids:
                centroid = centroid.reshape((-1, 4))
                ratio = (1 - bboxesOverRation(box, centroid)).item()
                if ratio < minDist:
                    minDist = ratio
            minDistList.append(minDist)

        sumDist = np.sum(minDistList)
        prob = minDistList / sumDist
        idx = np.random.choice(numsObver, 1, replace=True, p=prob)
        centroids.append(trainingData[idx])

    # kmeans 迭代聚类
    maxIterTimes = 100
    iter_times = 0
    while True:
        minDistList = []
        minDistList_ind = []
        for box in trainingData:
            box = box.reshape((-1, 4))
            minDist = 1
            box_belong = 0
            for i, centroid in enumerate(centroids):
                centroid = centroid.reshape((-1, 4))
                ratio = (1 - bboxesOverRation(box, centroid)).item()
                if ratio < minDist:
                    minDist = ratio
                    box_belong = i
            minDistList.append(minDist)
            minDistList_ind.append(box_belong)
        centroids_avg = []
        for _ in range(numAnchors):
            centroids_avg.append([])
        for i, anchor_id in enumerate(minDistList_ind):
            centroids_avg[anchor_id].append(trainingData[i])
        err = 0
        for i in range(numAnchors):
            if len(centroids_avg[i]):
                temp = np.mean(centroids_avg[i], axis=0)
                err += np.sqrt(np.sum(np.power(temp - centroids[i], 2)))
                centroids[i] = np.mean(centroids_avg[i], axis=0)
        iter_times += 1
        if iter_times > maxIterTimes or err == 0:
            break

    anchorBoxes = np.array([x[2:] for x in centroids])
    meanIoU = 1 - np.mean(minDistList)
    print('acc:{:.2f}%'.format(avg_iou(trainingData[:, 2:], anchorBoxes) * 100))
    return anchorBoxes, meanIoU


if __name__ == "__main__":
    np.random.seed(0)
    #  载入数据集,可以使用VOC的xml
    path = 'VOCdevkit/VOC2007/Annotations'
    # 生成的anchors的txt文件保存路径
    anchorsPath = 'yolo_anchors++.txt'
    # 生成的anchors数量
    anchors_num = 9
    # 输入的图片尺寸
    input_shape = [416, 416]
    print('Load xmls.')
    data = load_data(path)
    print('Load xmls done.')

    #   使用k聚类算法
    print('K-means++ boxes.')
    anchors, _= estimateAnchorBoxes(data, numAnchors=anchors_num)
    print('K-means boxes done.')
    anchors = anchors *  np.array([input_shape[1], input_shape[0]])
    # 排序
    cluster = anchors[np.argsort(anchors[:, 0])]
    print("聚类结果")
    print(cluster)

    # 保存结果 生成yolo_anchors++.txt文件
    f = open(anchorsPath, 'w')
    row = np.shape(cluster)[0]
    for i in range(row):
        if i == 0:
            x_y = "%d,%d" % (cluster[i][0], cluster[i][1])
        else:
            x_y = ", %d,%d" % (cluster[i][0], cluster[i][1])
        f.write(x_y)
    f.close()


使用voc数据集运行结果如下:

代码运行时间比较长,耐心等待即可!

kmeans++聚类生成anchors_第1张图片

参考

1.YOLOV4生成锚框kmeans_for_anchors.py

#-------------------------------------------------------------------------------------------------------#
#   kmeans虽然会对数据集中的框进行聚类,但是很多数据集由于框的大小相近,聚类出来的9个框相差不大,
#   这样的框反而不利于模型的训练。因为不同的特征层适合不同大小的先验框,shape越小的特征层适合越大的先验框
#   原始网络的先验框已经按大中小比例分配好了,不进行聚类也会有非常好的效果。
#-------------------------------------------------------------------------------------------------------#
import glob
import xml.etree.ElementTree as ET

import matplotlib.pyplot as plt
import numpy as np
from tqdm import tqdm


def cas_iou(box, cluster):
    x = np.minimum(cluster[:, 0], box[0])
    y = np.minimum(cluster[:, 1], box[1])

    intersection = x * y
    area1 = box[0] * box[1]

    area2 = cluster[:,0] * cluster[:,1]
    iou = intersection / (area1 + area2 - intersection)

    return iou

def avg_iou(box, cluster):
    return np.mean([np.max(cas_iou(box[i], cluster)) for i in range(box.shape[0])])

def kmeans(box, k):
    #-------------------------------------------------------------#
    #   取出一共有多少框
    #-------------------------------------------------------------#
    row = box.shape[0]
    
    #-------------------------------------------------------------#
    #   每个框各个点的位置
    #-------------------------------------------------------------#
    distance = np.empty((row, k))
    
    #-------------------------------------------------------------#
    #   最后的聚类位置
    #-------------------------------------------------------------#
    last_clu = np.zeros((row, ))

    np.random.seed()

    #-------------------------------------------------------------#
    #   随机选5个当聚类中心
    #-------------------------------------------------------------#
    cluster = box[np.random.choice(row, k, replace = False)]

    iter = 0
    while True:
        #-------------------------------------------------------------#
        #   计算当前框和先验框的宽高比例
        #-------------------------------------------------------------#
        for i in range(row):
            distance[i] = 1 - cas_iou(box[i], cluster)
        
        #-------------------------------------------------------------#
        #   取出最小点
        #-------------------------------------------------------------#
        near = np.argmin(distance, axis=1)

        if (last_clu == near).all():
            break
        
        #-------------------------------------------------------------#
        #   求每一个类的中位点
        #-------------------------------------------------------------#
        for j in range(k):
            cluster[j] = np.median(
                box[near == j],axis=0)

        last_clu = near
        if iter % 5 == 0:
            print('iter: {:d}. avg_iou:{:.2f}'.format(iter, avg_iou(box, cluster)))
        iter += 1

    return cluster, near

def load_data(path):
    data = []
    #-------------------------------------------------------------#
    #   对于每一个xml都寻找box
    #-------------------------------------------------------------#
    for xml_file in tqdm(glob.glob('{}/*xml'.format(path))):
        tree    = ET.parse(xml_file)
        height  = int(tree.findtext('./size/height'))
        width   = int(tree.findtext('./size/width'))
        if height<=0 or width<=0:
            continue
        
        #-------------------------------------------------------------#
        #   对于每一个目标都获得它的宽高
        #-------------------------------------------------------------#
        for obj in tree.iter('object'):
            xmin = int(float(obj.findtext('bndbox/xmin'))) / width
            ymin = int(float(obj.findtext('bndbox/ymin'))) / height
            xmax = int(float(obj.findtext('bndbox/xmax'))) / width
            ymax = int(float(obj.findtext('bndbox/ymax'))) / height

            xmin = np.float64(xmin)
            ymin = np.float64(ymin)
            xmax = np.float64(xmax)
            ymax = np.float64(ymax)
            # 得到宽高
            data.append([xmax - xmin, ymax - ymin])
    return np.array(data)

if __name__ == '__main__':
    np.random.seed(0)
    #-------------------------------------------------------------#
    #   运行该程序会计算'./VOCdevkit/VOC2007/Annotations'的xml
    #   会生成yolo_anchors.txt
    #-------------------------------------------------------------#
    input_shape = [416, 416]
    anchors_num = 9
    #-------------------------------------------------------------#
    #   载入数据集,可以使用VOC的xml
    #-------------------------------------------------------------#
    path        = 'C:\\Users\\52xj\\Desktop\\mobilenet-yolov4-pytorch-main\\mobilenet-yolov4-pytorch-main\\VOCdevkit\\VOC2007\\Annotations'
    
    #-------------------------------------------------------------#
    #   载入所有的xml
    #   存储格式为转化为比例后的width,height
    #-------------------------------------------------------------#
    print('Load xmls.')
    data = load_data(path)

    print(data.shape)
    data = data * np.array([input_shape[1], input_shape[0]])
    print(data.shape)
    print('Load xmls done.')

    #-------------------------------------------------------------#
    #   使用k聚类算法
    #-------------------------------------------------------------#
    print('K-means boxes.')
    cluster, near   = kmeans(data, anchors_num)
    print('K-means boxes done.')
    data            = data * np.array([input_shape[1], input_shape[0]])
    print(data.shape)
    cluster         = cluster * np.array([input_shape[1], input_shape[0]])

    #-------------------------------------------------------------#
    #   绘图
    #-------------------------------------------------------------#
    for j in range(anchors_num):
        plt.scatter(data[near == j][:,0], data[near == j][:,1])
        plt.scatter(cluster[j][0], cluster[j][1], marker='x', c='black')
    plt.savefig("kmeans_for_anchors.jpg")
    plt.show()
    print('Save kmeans_for_anchors.jpg in root dir.')

    cluster = cluster[np.argsort(cluster[:, 0] * cluster[:, 1])]
    print('avg_ratio:{:.2f}'.format(avg_iou(data, cluster)))
    print(cluster)

    f = open("yolo_anchors.txt", 'w')
    row = np.shape(cluster)[0]
    for i in range(row):
        if i == 0:
            x_y = "%d,%d" % (cluster[i][0], cluster[i][1])
        else:
            x_y = ", %d,%d" % (cluster[i][0], cluster[i][1])
        f.write(x_y)
    f.close()

2.Kmeans++聚类算法

重新思考Anchor Box估计

kmeans++聚类生成anchors_第2张图片

代码实现

def bboxesOverRation(bboxesA,bboxesB):
    """
    功能等同于matlab的函数bboxesOverRation
    bboxesA:M*4 array,形如[x,y,w,h]排布
    bboxesB: N*4 array,形如[x,y,w,h]排布
    """
    bboxesA = np.array(bboxesA.astype('float'))
    bboxesB = np.array(bboxesB.astype('float'))
    M = bboxesA.shape[0]
    N = bboxesB.shape[0]
    
    areasA = bboxesA[:,2]*bboxesA[:,3]
    areasB = bboxesB[:,2]*bboxesB[:,3]
    
    xA = bboxesA[:,0]+bboxesA[:,2]
    yA = bboxesA[:,1]+bboxesA[:,3]
    xyA = np.stack([xA,yA]).transpose()
    xyxyA = np.concatenate((bboxesA[:,:2],xyA),axis=1)
    
    xB = bboxesB[:,0] +bboxesB[:,2]
    yB = bboxesB[:,1]+bboxesB[:,3]
    xyB = np.stack([xB,yB]).transpose()
    xyxyB = np.concatenate((bboxesB[:,:2],xyB),axis=1)
    
    iouRatio = np.zeros((M,N))
    for i in range(M):
        for j in range(N):
            x1 = max(xyxyA[i,0],xyxyB[j,0]);
            x2 = min(xyxyA[i,2],xyxyB[j,2]);
            y1 = max(xyxyA[i,1],xyxyB[j,1]);
            y2 = min(xyxyA[i,3],xyxyB[j,3]);
            Intersection = max(0,(x2-x1))*max(0,(y2-y1));
            Union = areasA[i]+areasB[j]-Intersection;
            iouRatio[i,j] = Intersection/Union; 
    return iouRatio
   
def estimateAnchorBoxes(trainingData,numAnchors=9):
    '''
    功能:kmeans++算法估计anchor,类似于matlab函数estimateAnchorBoxes,当trainingData
    数据量较大时候,自写的kmeans迭代循环效率较低,matlab的estimateAnchorBoxes得出
    anchors较快,但meanIOU较低,然后乘以实际box的ratio即可。此算法由于优化是局部,易陷入局部最优解,结果不一致属正常
    [email protected]
    Example: 
        import scipy.io as scipo
        data = scipo.loadmat(r'D:\Matlab_files\trainingData.mat')
        trainingData = data['temp']
        
        meanIoUList = []
        for numAnchor in np.arange(1,16):
            anchorBoxes,meanIoU = estimateAnchorBoxes(trainingData,numAnchors=numAnchor)
            meanIoUList.append(meanIoU)
        plt.plot(np.arange(1,16),meanIoUList,'ro-')
        plt.ylabel("Mean IoU")
        plt.xlabel("Number of Anchors")
        plt.title("Number of Anchors vs. Mean IoU")
        
    Parameters
    ----------
    trainingData : numpy 类型
        形如[x,y,w,h]排布,M*4大小二维矩阵
    numAnchors : int, optional
        估计的anchors数量. The default is 9.

    Returns
    -------
    anchorBoxes : numpy类型
        形如[w,h]排布,N*2大小矩阵.
    meanIoU : scalar 标量
        DESCRIPTION.
    
    '''
    
    numsObver = trainingData.shape[0]
    xyArray = np.zeros((numsObver,2))
    trainingData[:,0:2] = xyArray
    assert(numsObver>=numAnchors)
    
    # kmeans++
    # init 
    centroids = [] # 初始化中心,kmeans++
    centroid_index = np.random.choice(numsObver, 1)
    centroids.append(trainingData[centroid_index])
    while len(centroids)<numAnchors:
        minDistList = []
        for box in trainingData:
            box = box.reshape((-1,4))
            minDist = 1
            for centroid in centroids:
                centroid = centroid.reshape((-1,4))
                ratio = (1-bboxesOverRation(box,centroid)).item()
                if ratio<minDist:
                    minDist = ratio
            minDistList.append(minDist)
            
        sumDist = np.sum(minDistList)
        prob = minDistList/sumDist 
        idx = np.random.choice(numsObver,1,replace=True,p=prob)
        centroids.append(trainingData[idx])
        
    # kmeans 迭代聚类
    maxIterTimes = 100
    iter_times = 0
    while True:
        minDistList = []
        minDistList_ind = []
        for box in trainingData:
            box = box.reshape((-1,4))
            minDist = 1
            box_belong = 0
            for i,centroid in enumerate(centroids):
                centroid = centroid.reshape((-1,4))
                ratio = (1-bboxesOverRation(box,centroid)).item()
                if ratio<minDist:
                    minDist = ratio
                    box_belong = i
            minDistList.append(minDist)
            minDistList_ind.append(box_belong)
        centroids_avg = []
        for _ in range(numAnchors):
            centroids_avg.append([])
        for i,anchor_id in enumerate(minDistList_ind):
            centroids_avg[anchor_id].append(trainingData[i])
        err = 0
        for i in range(numAnchors):
            if len(centroids_avg[i]):
                temp = np.mean(centroids_avg[i],axis=0)
                err +=  np.sqrt(np.sum(np.power(temp-centroids[i],2)))
                centroids[i] = np.mean(centroids_avg[i],axis=0)
        iter_times+=1
        if iter_times>maxIterTimes or err==0:
            break
    anchorBoxes = np.array([x[2:] for x in centroids])
    meanIoU = 1-np.mean(minDistList)
    return anchorBoxes,meanIoU

你可能感兴趣的:(聚类,kmeans,python)