概述:
Load功能:
语法:
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]
LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)] [INPUTFORMAT 'inputformat' SERDE 'serde'] (3.0 or later)
filepath:
filepath表示待移动数据的路径。可以指向文件(在这种情况下,Hive将文件移动到表中),也可以指向目录(在这种情况下,Hive将把该目录中的所有文件移动到表中)。
filepath文件路径支持下面三种形式,要结合LOCAL关键字一起考虑:
相对路径,例如:project/data1
绝对路径,例如:/user/hive/project/data1
具有schema的完整URI,例如:hdfs://namenode:9000/user/hive/project/data1
LOCAL:
指定LOCAL, 将在本地文件系统中查找文件路径。
没有指定LOCAL关键字。
本地文件系统指的是Hiveserver2服务所在机器的本地Linux文件系统,不是Hive客户端所在的本地文件系统。
OVERWRITE:
示例:
-- 从本地加载数据 数据位于HS2(node1)本地文件系统 本质是hadoop fs -put上传操作
LOAD DATA LOCAL INPATH '/root/hivedata/students.txt' INTO TABLE student_local;
--从HDFS加载数据 数据位于HDFS文件系统根目录下 本质是hadoop fs -mv 移动操作
--先把数据上传到HDFS上 hadoop fs -put /root/hivedata/students.txt /
LOAD DATA INPATH '/students.txt' INTO TABLE student_HDFS;
----从HDFS加载数据到分区表中并制定分区 数据位于HDFS文件系统根目录下
--先把数据上传到HDFS上 hadoop fs -put /root/hivedata/students.txt /
LOAD DATA INPATH '/students.txt' INTO TABLE student_HDFS_p partition(country ="CHina");
Hive3.0+,load加载数据时除了移动、复制操作之外,在某些场合下还会将加载重写为INSERT AS SELECT。
Hive3.0+,还支持使用inputformat、SerDe指定输入格式,例如Text,ORC等。
比如,如果表具有分区,则load命令没有指定分区,则将load转换为INSERT AS SELECT,并假定最后一组列为分区列,如果文件不符合预期,则报错。
示例:
本来加载的时候没有指定分区,语句是报错的,但是文件的格式符合表的结构,前两个是col1,col2,最后一个是分区字段col3,则此时会将load语句转换成为insert as select语句。
-------hive 3.0 load命令新特性------------------
CREATE TABLE if not exists tab1 (col1 int, col2 int)
PARTITIONED BY (col3 int)
row format delimited fields terminated by ',';
LOAD DATA LOCAL INPATH '/root/hivedata/tab1.txt' INTO TABLE tab1;
--tab1.txt内容如下
11,22,1
33,44,2
RDBMS中使用insert:
Hive官方推荐加载数据的方式:清洗数据成为结构化文件,再使用Load语法加载数据到表中。这样的效率更高。但是并不意味insert语法在Hive中没有用武之地。
insert+select:
INSERT OVERWRITE TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...) [IF NOT EXISTS]] select_statement1 FROM from_statement;
INSERT INTO TABLE tablename1 [PARTITION (partcol1=val1, partcol2=val2 ...)] select_statement1 FROM from_statement;
概述:
------------multiple inserts----------------------
--当前库下已有一张表student
select * from student;
--创建两张新表
create table student_insert1(sno int);
create table student_insert2(sname string);
--多重插入
from student
insert overwrite table student_insert1
select num
insert overwrite table student_insert2
select name;
背景:
概述:
示例:
--1、首先设置动态分区模式为非严格模式 默认已经开启了动态分区功能
set hive.exec.dynamic.partition = true;
set hive.exec.dynamic.partition.mode = nonstrict;
--2、当前库下已有一张表student
select * from student;
--3、创建分区表 以sdept作为分区字段
create table student_partition(Sno int,Sname string,Sex string,Sage int) partitioned by(Sdept string);
--4、执行动态分区插入操作
insert into table student_partition partition(Sdept)
select num,name,sex,age,dept from student;
--其中,num,name,sex,age作为表的字段内容插入表中
--dept作为分区字段值
select *
from student_partition;
概述:Hive支持将select查询的结果导出成文件存放在文件系统中。
注意:导出操作是一个OVERWRITE覆盖操作,慎重。
语法格式;
--标准语法:
INSERT OVERWRITE [LOCAL] DIRECTORY directory1
[ROW FORMAT row_format] [STORED AS file_format]
SELECT ... FROM ...
--Hive extension (multiple inserts):
FROM from_statement
INSERT OVERWRITE [LOCAL] DIRECTORY directory1 select_statement1
[INSERT OVERWRITE [LOCAL] DIRECTORY directory2 select_statement2] ...
--row_format:
DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS TERMINATED BY char]
[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]
示例:
--当前库下已有一张表student
select * from student;
--1、导出查询结果到HDFS指定目录下
insert overwrite directory '/tmp/hive_export/e1' select * from student;
--2、导出时指定分隔符和文件存储格式
insert overwrite directory '/tmp/hive_export/e2' row format delimited fields terminated by ','
stored as orc
select * from student;
--3、导出数据到本地文件系统指定目录下
insert overwrite local directory '/root/hive_export/e1' select * from student;
概述:Hive的文件是存储在HDFS上的,而HDFS上又不支持对文件的任意修改,只能是采取另外的手段来完成。
用HDFS文件作为原始数据(基础数据),用delta保存事务操作的记录增量数据;
正在执行中的事务,是以一个staging开头的文件夹维护的,执行结束就是delta文件夹。每次执行一次事务操作都会有这样的一个delta增量文件夹;
当访问Hive数据时,根据HDFS原始文件和delta增量文件做合并,查询最新的数据。
实现原理:
delta文件夹命名格式:
每个事务的delta文件夹下,都有两个文件:
_orc_acid_version的内容是2,即当前ACID版本号是2。和版本1的主要区别是UPDATE语句采用了split-update特性,即先删除、后插入。这个文件不是ORC文件,可以下载下来直接查看。
bucket_00000文件则是写入的数据内容。如果事务表没有分区和分桶,就只有一个这样的文件。文件都以ORC格式存储,底层二级制,需要使用ORC TOOLS查看。
bucket_00000文件字段介绍:
合并器(Compactor)
使用设置:
可以使用set设置当前session生效 也可以配置在hive-site.xml中)
set hive.support.concurrency = true; --Hive是否支持并发
set hive.enforce.bucketing = true; --从Hive2.0开始不再需要 是否开启分桶功能
set hive.exec.dynamic.partition.mode = nonstrict; --动态分区模式 非严格
set hive.txn.manager = org.apache.hadoop.hive.ql.lockmgr.DbTxnManager;
set hive.compactor.initiator.on = true; --是否在Metastore实例上运行启动压缩合并
set hive.compactor.worker.threads = 1; --在此metastore实例上运行多少个合并程序工作线程。
局限性:虽然Hive支持了具有ACID语义的事务,但是在使用起来,并没有像在MySQL中使用那样方便,有很多限制;
1.尚不支持BEGIN,COMMIT和ROLLBACK,所有语言操作都是自动提交的;
2.表文件存储格式仅支持ORC(STORED AS ORC);
3.需要配置参数开启事务使用;
4.外部表无法创建为事务表,因为Hive只能控制元数据,无法管理数据;
5.表属性参数transactional必须设置为true;
6.必须将Hive事务管理器设置为org.apache.hadoop.hive.ql.lockmgr.DbTxnManager才能使用ACID表;
7.事务表不支持LOAD DATA …语句。
[WITH CommonTableExpression (, CommonTableExpression)*]
SELECT [ALL | DISTINCT] select_expr, select_expr, ...
FROM table_reference
[WHERE where_condition]
[GROUP BY col_list]
[ORDER BY col_list]
[CLUSTER BY col_list
| [DISTRIBUTE BY col_list] [SORT BY col_list]
]
[LIMIT [offset,] rows];
执行顺序:
表示检索查询返回的列,必须至少有一个select_expr。
--1、select_expr
--查询所有字段或者指定字段
select * from t_usa_covid19_p;
select county, cases, deaths from t_usa_covid19_p;
--查询匹配正则表达式的所有字段
SET hive.support.quoted.identifiers = none; --带反引号的名称被解释为正则表达式
select `^c.*` from t_usa_covid19_p;
--查询当前数据库
select current_database(); --省去from关键字
--查询使用函数
select count(county) from t_usa_covid19_p;
--2、ALL DISTINCT
--返回所有匹配的行
select state
from t_usa_covid19_p;
--相当于
select all state
from t_usa_covid19_p;
--返回所有匹配的行 去除重复的结果
select distinct state
from t_usa_covid19_p;
--多个字段distinct 整体去重
select distinct county,state from t_usa_covid19_p;
select distinct sex from student;
--3、WHERE CAUSE
select * from t_usa_covid19_p where 1 > 2; -- 1 > 2 返回false
select * from t_usa_covid19_p where 1 = 1; -- 1 = 1 返回true
--where条件中使用函数 找出州名字母长度超过10位的有哪些
select * from t_usa_covid19_p where length(state) >10 ;
--where子句支持子查询
SELECT *
FROM A
WHERE A.a IN (SELECT foo FROM B);
--注意:where条件中不能使用聚合函数
--报错 SemanticException:Not yet supported place for UDAF 'count'
--聚合函数要使用它的前提是结果集已经确定。
--而where子句还处于“确定”结果集的过程中,因而不能使用聚合函数。
select state,count(deaths)
from t_usa_covid19_p where count(deaths) >100 group by state;
--可以使用Having实现
select state,count(deaths)
from t_usa_covid19_p group by state
having count(deaths) > 100;
--4、分区查询、分区裁剪
--找出来自加州,累计死亡人数大于1000的县 state字段就是分区字段 进行分区裁剪 避免全表扫描
select * from t_usa_covid19_p where state ="California" and deaths > 1000;
--多分区裁剪
select * from t_usa_covid19_p where count_date = "2021-01-28" and state ="California" and deaths > 1000;
概述:GROUP BY语句用于结合聚合函数,根据一个或多个列对结果集进行分组。注意:出现在GROUP BY中select_expr的字段:要么是GROUP BY分组的字段;要么是被聚合函数应用的字段。
语法限制:
出现在GROUP BY中select_expr的字段:要么是GROUP BY分组的字段**;**要么是被聚合函数应用的字段。
原因:避免出现一个字段多个值的歧义。
分组字段出现select_expr中,一定没有歧义,因为就是基于该字段分组的,同一组中必相同;
被聚合函数应用的字段,也没歧义,因为聚合函数的本质就是多进一出,最终返回一个结果。
--5、GROUP BY
--根据state州进行分组
--SemanticException:Expression not in GROUP BY key 'deaths'
--deaths不是分组字段 报错
--state是分组字段 可以直接出现在select_expr中
select state,deaths
from t_usa_covid19_p where count_date = "2021-01-28" group by state;
--被聚合函数应用
select state,count(deaths)from t_usa_covid19_p where count_date = "2021-01-28" group by state;
--6、having
--统计死亡病例数大于10000的州
--where语句中不能使用聚合函数 语法报错
select state,sum(deaths)
from t_usa_covid19_p where count_date = "2021-01-28" and sum(deaths) >10000 group by state;
--先where分组前过滤(此处是分区裁剪),再进行group by分组, 分组后每个分组结果集确定 再使用having过滤
select state,sum(deaths)
from t_usa_covid19_p
where count_date = "2021-01-28"
group by state
having sum(deaths) > 10000;
--这样写更好 即在group by的时候聚合函数已经作用得出结果 having直接引用结果过滤 不需要再单独计算一次了
select state,sum(deaths) as cnts
from t_usa_covid19_p
where count_date = "2021-01-28"
group by state
having cnts> 10000;
having和where的区别:
--7、limit
--没有限制返回2021.1.28 加州的所有记录
select * from t_usa_covid19_p
where count_date = "2021-01-28"
and state ="California";
--返回结果集的前5条
select * from t_usa_covid19_p
where count_date = "2021-01-28"
and state ="California"
limit 5;
--返回结果集从第1行开始 共3行
select * from t_usa_covid19_p
where count_date = "2021-01-28"
and state ="California"
limit 2,3; --注意 第一个参数偏移量是从0开始的
---1、order by
--根据字段进行排序
select * from t_usa_covid19_p
where count_date = "2021-01-28"
and state ="California"
order by deaths; ----默认asc, nulls first 也可以手动指定nulls last
select * from t_usa_covid19_p
where count_date = "2021-01-28"
and state ="California"
order by deaths desc; --指定desc null last
--强烈建议将LIMIT与ORDER BY一起使用。避免数据集行数过大
--当hive.mapred.mode设置为strict严格模式时,使用不带LIMIT的ORDER BY时会引发异常。
select * from t_usa_covid19_p
where count_date = "2021-01-28"
and state ="California"
order by deaths desc
limit 3;
--2、cluster by
select * from student;
--不指定reduce task个数
--日志显示:Number of reduce tasks not specified. Estimated from input data size: 1
select * from student cluster by num;
--手动设置reduce task个数
set mapreduce.job.reduces =2;
select * from student cluster by num;
局限性:
DISTRIBUTE BY +SORT BY就相当于把CLUSTER BY的功能一分为二:
DISTRIBUTE BY负责根据指定字段分组;
SORT BY负责分组内排序规则。
分组和排序的字段可以不同。
--案例:把学生表数据根据性别分为两个部分,每个分组内根据年龄的倒序排序。
select * from student distribute by sex sort by age desc;
CLUSTER、 DISTRIBUTE、SORT、ORDER BY区别:
概述:UNION用于将来自于多个SELECT语句的结果合并为一个结果集。
语法:
select_statement
UNION [ALL | DISTINCT]
select_statement
UNION [ALL | DISTINCT]
select_statement ...;
--使用DISTINCT关键字与使用UNION默认值效果一样,都会删除重复行。
select num,name from student_local
UNION
select num,name from student_hdfs;
--和上面一样
select num,name from student_local
UNION DISTINCT
select num,name from student_hdfs;
--使用ALL关键字会保留重复行。
select num,name from student_local
UNION ALL
select num,name from student_hdfs;
--如果要将ORDER BY,SORT BY,CLUSTER BY,DISTRIBUTE BY或LIMIT应用于单个SELECT
--请将子句放在括住SELECT的括号内
SELECT num,name FROM (select num,name from student_local LIMIT 2) subq1
UNION
SELECT num,name FROM (select num,name from student_hdfs LIMIT 3) subq2
--如果要将ORDER BY,SORT BY,CLUSTER BY,DISTRIBUTE BY或LIMIT子句应用于整个UNION结果
--请将ORDER BY,SORT BY,CLUSTER BY,DISTRIBUTE BY或LIMIT放在最后一个之后。
select num,name from student_local
UNION
select num,name from student_hdfs
order by num desc;
--from子句中子查询(Subqueries)
--子查询
SELECT num
FROM (
select num,name from student_local
) tmp;
--包含UNION ALL的子查询的示例
SELECT t3.name
FROM (
select num,name from student_local
UNION distinct
select num,name from student_hdfs
) t3;
从Hive 0.13开始,WHERE子句支持下述类型的子查询:
--where子句中子查询(Subqueries)
--不相关子查询,相当于IN、NOT IN,子查询只能选择一个列。
--(1)执行子查询,其结果不被显示,而是传递给外部查询,作为外部查询的条件使用。
--(2)执行外部查询,并显示整个结果。
SELECT *
FROM student_hdfs
WHERE student_hdfs.num IN (select num from student_local limit 2);
--相关子查询,指EXISTS和NOT EXISTS子查询
--子查询的WHERE子句中支持对父查询的引用
SELECT A
FROM T1
WHERE EXISTS (SELECT B FROM T2 WHERE T1.X = T2.Y);
概述:
-----------------Common Table Expressions(CTE)-----------------------------
--select语句中的CTE
with q1 as (select num,name,age from student where num = 95002)
select *
from q1;
-- from风格
with q1 as (select num,name,age from student where num = 95002)
from q1
select *;
-- chaining CTEs 链式
with q1 as ( select * from student where num = 95002),
q2 as ( select num,name,age from q1)
select * from (select num from q2) a;
-- union
with q1 as (select * from student where num = 95002),
q2 as (select * from student where num = 95004)
select * from q1 union all select * from q2;
--视图,CTAS和插入语句中的CTE
-- insert
create table s1 like student;
with q1 as ( select * from student where num = 95002)
from q1
insert overwrite table s1
select *;
select * from s1;
-- ctas
create table s2 as
with q1 as ( select * from student where num = 95002)
select * from q1;
-- view
create view v1 as
with q1 as ( select * from student where num = 95002)
select * from q1;
select * from v1;
在Hive中,当下版本3.1.2总共支持6种join语法。分别是:inner join(内连接)、left join(左连接)、right join(右连接)、full outer join(全外连接)、left semi join(左半开连接)、cross join(交叉连接,也叫做笛卡尔乘积)。
语法:
join_table:
table_reference [INNER] JOIN table_factor [join_condition]
| table_reference {LEFT|RIGHT|FULL} [OUTER] JOIN table_reference join_condition
| table_reference LEFT SEMI JOIN table_reference join_condition
| table_reference CROSS JOIN table_reference [join_condition] (as of Hive 0.10)
join_condition:
ON expression
join语法丰富化:
--1、inner join
select e.id,e.name,e_a.city,e_a.street
from employee e inner join employee_address e_a
on e.id =e_a.id;
--等价于 inner join=join
select e.id,e.name,e_a.city,e_a.street
from employee e join employee_address e_a
on e.id =e_a.id;
--等价于 隐式连接表示法
select e.id,e.name,e_a.city,e_a.streetfrom employee e , employee_address e_a
where e.id =e_a.id;
5.2.2 left join(左连接)
--2、left join
select e.id,e.name,e_conn.phno,e_conn.email
from employee e left join employee_connection e_conn
on e.id =e_conn.id;
--等价于 left outer join
select e.id,e.name,e_conn.phno,e_conn.email
from employee e left outer join employee_connection e_conn
on e.id =e_conn.id;
5.2.3 right join(右连接)
--3、right join
select e.id,e.name,e_conn.phno,e_conn.email
from employee e right join employee_connection e_conn
on e.id =e_conn.id;
--等价于 right outer join
select e.id,e.name,e_conn.phno,e_conn.email
from employee e right outer join employee_connection e_conn
on e.id =e_conn.id;
5.2.4 full outer join(全外连接)
--4、full outer join
select e.id,e.name,e_a.city,e_a.street
from employee e full outer join employee_address e_a
on e.id =e_a.id;
--等价于
select e.id,e.name,e_a.city,e_a.street
from employee e full join employee_address e_a
on e.id =e_a.id;
5.2.5 left semi join(左半开连接)
--5、left semi join
select *
from employee e left semi join employee_address e_addr
on e.id =e_addr.id;
--相当于 inner join 只不过效率高一些
select e.*
from employee e inner join employee_address e_addr
on e.id =e_addr.id;
5.2.6 cross join(交叉连接,也叫做笛卡尔乘积)
--6、cross join
--下列A、B、C 执行结果相同,但是效率不一样:
--A:
select a.*,b.* from employee a,employee_address b where a.id=b.id;
--B:
select * from employee a cross join employee_address b on a.id=b.id;
select * from employee a cross join employee_address b where a.id=b.id;
--C:
select * from employee a inner join employee_address b on a.id=b.id;
--一般不建议使用方法A和B,因为如果有WHERE子句的话,往往会先生成两个表行数乘积的行的数据表然后才根据WHERE条件从中选择。
--因此,如果两个需要求交集的表太大,将会非常非常慢,不建议使用。
a)允许使用复杂的联接表达式,支持非等值连接
SELECT a.* FROM a JOIN b ON (a.id = b.id)
SELECT a.* FROM a JOIN b ON (a.id = b.id AND a.department = b.department)
SELECT a.* FROM a LEFT OUTER JOIN b ON (a.id <> b.id)
b) 同一查询中可以连接2个以上的表
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
c) 如果每个表在联接子句中使用相同的列,则Hive将多个表上的联接转换为单个MR作业
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
--由于联接中仅涉及b的key1列,因此被转换为1个MR作业来执行
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
--会转换为两个MR作业,因为在第一个连接条件中使用了b中的key1列,而在第二个连接条件中使用了b中的key2列。
-- 第一个map / reduce作业将a与b联接在一起,然后将结果与c联接到第二个map / reduce作业中。
d) join时的最后一个表会通过reducer流式传输,并在其中缓冲之前的其他表,因此,将大表放置在最后有助于减少reducer阶段缓存数据所需要的内存
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
--由于联接中仅涉及b的key1列,因此被转换为1个MR作业来执行,并且表a和b的键的特定值的值被缓冲在reducer的内存中。然后,对于从c中检索的每一行,将使用缓冲的行来计算联接。
SELECT a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key2)
--计算涉及两个MR作业。其中的第一个将a与b连接起来,并缓冲a的值,同时在reducer中流式传输b的值。
-- 在第二个MR作业中,将缓冲第一个连接的结果,同时将c的值通过reducer流式传输。
e) 在join的时候,可以通过语法STREAMTABLE提示指定要流式传输的表。如果省略STREAMTABLE提示,则Hive将流式传输最右边的表。
SELECT /*+ STREAMTABLE(a) */ a.val, b.val, c.val FROM a JOIN b ON (a.key = b.key1) JOIN c ON (c.key = b.key1)
--a,b,c三个表都在一个MR作业中联接,并且表b和c的键的特定值的值被缓冲在reducer的内存中。
-- 然后,对于从a中检索到的每一行,将使用缓冲的行来计算联接。如果省略STREAMTABLE提示,则Hive将流式传输最右边的表。
f) join在WHERE条件之前进行。
g) 如果除一个要连接的表之外的所有表都很小,则可以将其作为仅map作业执行(mapjoin)。
SELECT /*+ MAPJOIN(b) */ a.key, a.value FROM a JOIN b ON a.key = b.key
--不需要reducer。对于A的每个Mapper,B都会被完全读取。限制是不能执行FULL / RIGHT OUTER JOIN b。
-----------根据黑马程序员学习所总结