openGL光照

openGL系列文章目录

前言

定义了环面、光照和材质特性。接着将环面顶点以及相关法向量读入缓冲区。display()函数与之前程序中的类似,在这里不同的是它同时也将光照和材质信息传入顶点着色器。为了传入这些信息,它调用installLights(),将光源在视觉空间中的位置,以及材质的ADS 特性,读入相应的统一变量以供着色器使用。注意,我们提前定义了这些统一位置变量,以求更好的性能。

一、环境光、漫反射、镜面光

其中一个重要的细节是变换矩阵MV,用来将顶点位置移动到视觉空间,但它并不总能正确地将法向量也调整进视觉空间。直接对法向量应用MV 矩阵不能保证法向量依然与物体表面垂直。正确的变换是MV 的逆转置矩阵,=这个新增的矩阵叫作“invTrMat”,通过统一变量传入着色器。变量lightPosV 包含光源在相机空间中的位置。我们每帧只需要计算一次,因此我们在installLights()中[在display()中调用]而非着色器中计算。其中顶点着色器使用了一些我们目前没有见过的符号。注意,在顶点着色器最后进行了向量加
法,并且在GLSL 中可用。我们将会在展示着色器之后讨论其他符号。

二、例子

主程序

#include "glew/glew.h"
#include "glfw/glfw3.h"
#include "glm/glm.hpp"
#include "glm/gtc/matrix_transform.hpp"
#include "glm/gtc/type_ptr.hpp"
#include "Utils.h"
#include "Torus.h"
#include "camera.h"
#include 
#include 
#include 

void key_move();

using namespace std;

static const float pai = 3.1415926f;

float toRadians(float degrees)
{
	return  (degrees * 2.f * pai) / 360.f;
}

static const int screen_width = 1920;
static const int screen_height = 1080;

static const int numVAOs = 1;
static const int numVBOs = 4;

GLuint vao[numVAOs] = { 0 };
GLuint vbo[numVBOs] = { 0 };

float aspect = 0.f;
float torusLocX = 0.f, torusLocY = 0.f, torusLocZ = 0.f;

GLboolean keys[1024] = { GL_FALSE };
float deltaTime = 0.f;
float lastFrame = 0.f;
GLboolean firstMouse = GL_TRUE;
float lastLocX = 0.f;
float lastLocY = 0.f;

//Camera camera(glm::vec3(0.f, 0.f, 5.f));

GLuint renderingProgram = 0;
GLuint textureId = 0;
int width = 0;
int height = 0;

Camera camera(glm::vec3(0.f, 0.5f, 6.f));

Torus myTorus(0.5f, 0.2f, 48);
int numTorusVertices = myTorus.getNumVertices();
int numTorusIndices = myTorus.getNumIndices();

glm::vec3 lightLoc = glm::vec3(5.f, 2.f, 2.f);
float amt = 0.f;   //Y轴旋转分量

// variable allocation for display
GLuint mvLoc = 0, projLoc = 0, nLoc = 0;
GLuint globalAmbLoc = 0.f, ambLoc = 0.f, diffLoc = 0.f, specLoc = 0.f, posLoc = 0.f, mambLoc = 0.f, mdiffLoc = 0.f, mspecLoc = 0.f, mshiLoc = 0.f;

glm::mat4 mMat(1.f), vMat(1.f), mvMat(1.f), pMat(1.f), invTrMat(1.f), rMat(1.f);
glm::vec3 currentLightPos(0), transformed(0);
float lightPos[3] = { 0.f };

//white light
float globalAmbient[4] = { 0.7f, 0.7f, 0.7f, 1.f };
//float lightAmbient[4] = { 0.f, 1.f };
float lightAmbient[4] = { 0.f, 0.f, 0.f, 1.f };
float lightDiffuse[4] = { 1.f };
float lightSpecular[4] = { 1.f };

//gold material
float* matAmb = Utils::goldAmbient();
float* matDif = Utils::goldDiffuse();
float* matSpe = Utils::goldSpecular();
float matShi = Utils::goldShininess();

void installLights(glm::mat4 vMatrix)
{
	transformed = glm::vec3(vMatrix * glm::vec4(currentLightPos, 1.f));
	lightPos[0] = transformed.x;
	lightPos[1] = transformed.y;
	lightPos[2] = transformed.z;

	// get the locations of the light and material fields in the shader
	globalAmbLoc = glGetUniformLocation(renderingProgram, "globalAmbient");
	ambLoc = glGetUniformLocation(renderingProgram, "light.ambient");
	diffLoc = glGetUniformLocation(renderingProgram, "light.diffuse");
	specLoc = glGetUniformLocation(renderingProgram, "light.specular");
	posLoc = glGetUniformLocation(renderingProgram, "light.position");
	mambLoc = glGetUniformLocation(renderingProgram, "material.ambient");
	mdiffLoc = glGetUniformLocation(renderingProgram, "material.diffuse");
	mspecLoc = glGetUniformLocation(renderingProgram, "material.specular");
	mshiLoc = glGetUniformLocation(renderingProgram, "material.shininess");

	//  set the uniform light and material values in the shader
	glProgramUniform4fv(renderingProgram, globalAmbLoc, 1, globalAmbient);
	glProgramUniform4fv(renderingProgram, ambLoc, 1, lightAmbient);
	glProgramUniform4fv(renderingProgram, diffLoc, 1, lightDiffuse);
	glProgramUniform4fv(renderingProgram, specLoc, 1, lightSpecular);
	glProgramUniform3fv(renderingProgram, posLoc, 1, lightPos);
	//glProgramUniform3fv(renderingProgram, posLoc, 1, lightPos);
	glProgramUniform4fv(renderingProgram, mambLoc, 1, matAmb);
	glProgramUniform4fv(renderingProgram, mdiffLoc, 1, matDif);
	glProgramUniform4fv(renderingProgram, mspecLoc, 1, matSpe);
	//glProgramUniform3fv(renderingProgram, mshiLoc, 1, &matShi);
	glProgramUniform1f(renderingProgram, mshiLoc, matShi);
}

void setupVertices(void)
{
	vector<int> ind = myTorus.getIndices();
	vector<glm::vec3> vert = myTorus.getVertices();
	vector<glm::vec2> tex = myTorus.getTexCoords();
	vector<glm::vec3> norm = myTorus.getNormals();

	vector<float> pValues;
	vector<float> tValues;
	vector<float> nValues;

	for (int i=0; i<myTorus.getNumVertices(); i++)
	{
		pValues.push_back(vert[i].x);
		pValues.push_back(vert[i].y);
		pValues.push_back(vert[i].z);

		tValues.push_back(tex[i].s);
		tValues.push_back(tex[i].t);

		nValues.push_back(norm[i].x);
		nValues.push_back(norm[i].y);
		nValues.push_back(norm[i].z);
	}

	glGenVertexArrays(numVAOs, vao);
	glBindVertexArray(vao[0]);

	glGenBuffers(numVBOs, vbo);
	glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	glBufferData(GL_ARRAY_BUFFER, pValues.size() * sizeof(float), &pValues[0], GL_STATIC_DRAW);
	//glBufferData(GL_ARRAY_BUFFER, pValues.size() * sizeof(float), &pValues[0], GL_STATIC_DRAW);

	glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	glBufferData(GL_ARRAY_BUFFER, tValues.size() * sizeof(float), &tValues[0], GL_STATIC_DRAW);

	glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
	glBufferData(GL_ARRAY_BUFFER, nValues.size() * sizeof(float), &nValues[0], GL_STATIC_DRAW);

	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);
	glBufferData(GL_ELEMENT_ARRAY_BUFFER , ind.size() * sizeof(int), &ind[0], GL_STATIC_DRAW);
}

void init(GLFWwindow* window)
{
	renderingProgram = Utils::createShaderProgram("BlinnPhongShaders/vertShader.glsl", "BlinnPhongShaders/fragShader.glsl");	
	torusLocX = 0.f, torusLocY = 0.f, torusLocZ = 0.f;
	glfwGetFramebufferSize(window, &width, &height);
	aspect = (float)width / (float)height;
	pMat = glm::perspective(glm::radians(45.f), aspect, 0.01f, 1000.f);
	//vMat = camera.GetViewMatrix();

	setupVertices();
}

void display(GLFWwindow* window, double currentTime)
{
	glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
	glClearColor(0.1f, 0.6f, 0.2f, 1.f);

	glUseProgram(renderingProgram);

	deltaTime = currentTime - lastFrame;
	lastFrame = currentTime;

	key_move();

	mvLoc = glGetUniformLocation(renderingProgram, "mv_matrix");
	projLoc = glGetUniformLocation(renderingProgram, "proj_matrix");
	nLoc = glGetUniformLocation(renderingProgram, "norm_matrix");

	vMat = camera.GetViewMatrix();
	mMat = glm::translate(glm::mat4(1.f), glm::vec3(torusLocX, torusLocY, torusLocZ));
	//mMat = glm::rotate(mMat, glm::radians(30.f), glm::vec3(1.f, 0.f, 0.f));
	mMat = glm::translate(mMat, glm::vec3(torusLocX, torusLocY,torusLocZ));
	mMat *= glm::rotate(mMat, toRadians(30.f), glm::vec3(1.f, 0.f, 0.f));

	currentLightPos = glm::vec3(lightLoc.x, lightLoc.y, lightLoc.z);
	amt += 0.5f;
	rMat = glm::rotate(glm::mat4(1.f), toRadians(amt), glm::vec3(0.f, 0.f, 1.f));
	currentLightPos = glm::vec3(rMat * glm::vec4(currentLightPos, 1.f));

	installLights(vMat);
	//installLights(vMat);
	mvMat = vMat * mMat;
	invTrMat = glm::transpose(glm::inverse(mvMat));   //这里为什么要用转置矩阵

	//更改一个uniform矩阵变量或数组的值。要更改的uniform变量的位置由location指定,location的值应该由glGetUniformLocation函数返回
	// 将透视矩阵和MV 矩阵复制给相应的统一变量
	/*通过一致变量(uniform修饰的变量)引用将一致变量值传入渲染管线。
	  location : uniform的位置。
	  count : 需要加载数据的数组元素的数量或者需要修改的矩阵的数量。
	  transpose : 指明矩阵是列优先(column major)矩阵(GL_FALSE)还是行优先(row major)矩阵(GL_TRUE)。
	  value : 指向由count个元素的数组的指针。
	*/
	glUniformMatrix4fv(mvLoc, 1, GL_FALSE, glm::value_ptr(mvMat));
	glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(pMat));
	glUniformMatrix4fv(nLoc, 1, GL_FALSE, glm::value_ptr(invTrMat));

	glBindBuffer(GL_ARRAY_BUFFER, vbo[0]);
	//指定了渲染时索引值为 index 的顶点属性数组的数据格式和位置
	/*Parameters
	index
		指定要修改的顶点属性的索引值

		size
		指定每个顶点属性的组件数量。必须为1、2、3或者4。初始值为4。(梦维:如position是由3个(x, y, z)组成,而颜色是4个(r, g, b, a))

		type
		指定数组中每个组件的数据类型。可用的符号常量有GL_BYTE, GL_UNSIGNED_BYTE, GL_SHORT, GL_UNSIGNED_SHORT, GL_FIXED, 和 GL_FLOAT,初始值为GL_FLOAT。

		normalized
		指定当被访问时,固定点数据值是否应该被归一化(GL_TRUE)或者直接转换为固定点值(GL_FALSE)。

		stride
		指定连续顶点属性之间的偏移量。如果为0,那么顶点属性会被理解为:它们是紧密排列在一起的。初始值为0。

		pointer
		指定一个指针,指向数组中第一个顶点属性的第一个组件。初始值为0。*/
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, 0);
	//启用或禁用通用顶点属性数组,参数0索引和着色器中的layout(location = 0)中的0相对应,顶点位置
	glEnableVertexAttribArray(0);

	glBindBuffer(GL_ARRAY_BUFFER, vbo[1]);
	glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, 0, 0);
	glEnableVertexAttribArray(1);

	glBindBuffer(GL_ARRAY_BUFFER, vbo[2]);
	glVertexAttribPointer(2, 3, GL_FLOAT, GL_FALSE, 0, 0);
	glEnableVertexAttribArray(2);


	//激活纹理
	glActiveTexture(GL_TEXTURE0);
	glBindTexture(GL_TEXTURE_2D, textureId);

	//背面剔除,默认情况下,背面剔除是关闭的
	//glEnable(/*GL_CULL_FACE | */GL_DEPTH_TEST);  //开启背面剔除,注意:这里不能开启深度测试!!!!!! 否则贴图纹理有重叠,不知道为什么?:
	//glEnable(GL_CULL_FACE | GL_DEPTH_TEST);   //GL_CULL_FACE 和 GL_DEPTH_TEST 不能写在一起
	glEnable(GL_CULL_FACE);
	glFrontFace(GL_CCW);
	glEnable(GL_DEPTH_TEST);
	glDepthFunc(GL_LEQUAL);

	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, vbo[3]);
	glDrawElements(GL_TRIANGLES, numTorusIndices, GL_UNSIGNED_INT, 0);
}

void window_size_callback(GLFWwindow* window, int newWidth, int newHeight)
{
	glfwGetWindowSize(window, &newWidth, &newHeight);
	glViewport(0, 0, newWidth, newHeight);
	aspect = (float)newWidth / (float)height;
	pMat = glm::perspective(glm::radians(45.f), aspect, 0.001f, 1000.f);
}

void press_key_callback(GLFWwindow* window, int key, int scancode, int active, int model)
{
	if ((key == GLFW_KEY_ESCAPE) && (active == GLFW_PRESS))
	{
		glfwSetWindowShouldClose(window, GLFW_TRUE);
	}
	if (active == GLFW_PRESS)
	{
		keys[key] = GLFW_TRUE;
	}
	else if (active == GLFW_RELEASE)
	{
		keys[key] = GLFW_FALSE;
	}
}

void key_move()
{
	if (keys[GLFW_KEY_W])
	{
		camera.ProcessKeyboard(FORWARD, deltaTime);
	}
	if (keys[GLFW_KEY_S])
	{
		camera.ProcessKeyboard(BACKWARD, deltaTime);
	}
	if (keys[GLFW_KEY_A])
	{
		camera.ProcessKeyboard(LEFT, deltaTime);
	}
	if (keys[GLFW_KEY_D])
	{
		camera.ProcessKeyboard(RIGHT, deltaTime);
	}
}

void mouse_move_callback(GLFWwindow*, double xPos, double yPos)
{
	if (firstMouse)
	{
		lastLocX = xPos;
		lastLocY = yPos;
		firstMouse = GL_FALSE;
	}

	double offsetX = xPos - lastLocX;
	double offsetY = lastLocY - yPos;

	lastLocX = xPos;
	lastLocY = yPos;

	camera.ProcessMouseMovement(offsetX, offsetY);
}

void mouse_scroll_callback(GLFWwindow* window, double xPos, double yPos)
{
	camera.ProcessMouseScroll(xPos);
}

int main(int argc, char** argv)
{
	int glfwState = glfwInit();
	if (GLFW_FALSE == glfwState)
	{
		cout << "GLFW initialize failed......invoke glfwInit().....Error file:" << __FILE__ << "......Error line:" << __LINE__ << endl;
		glfwTerminate();
		exit(EXIT_FAILURE);
	}

	/*因为我们要使用OpenGL 4.6,所以我们把GLFW_CONTEXT_VERSION_MAJOR和GLFW_CONTEXT_VERSION_MINOR对应的hint都设置为4和6。
	因为我们要使用OpenGL核心模式(这个后面会提到更多),所以我们把GLFW_OPENGL_PROFILE对应的hint设置为GLFW_OPENGL_CORE_PROFILE,
	表示使用OpenGL核心模式。最后,把GLFW_RESIZABLE对应的hint设置为GLFW_FALSE,表示窗口不允许用户调整大小。
	之所以这样做是因为如果允许用户调整大小,大小发生变化后,窗口的绘制区域默认不变(依然是原来窗口的区域),
	也就是说窗口上绘制的图像的大小、位置不会发生改变。为了避免这种现象发生,我们就简单地不让用户调整窗口大小
	(当然也有更好的方法,就是用GLFW设置一个窗口大小的回调函数,但这样比较简单)。*/
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 4);
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 6);
	glfwWindowHint(GLFW_OPENGL_CORE_PROFILE, GLFW_OPENGL_PROFILE);
	glfwWindowHint(GLFW_RESIZABLE, GL_TRUE);

	GLFWwindow* window = glfwCreateWindow(screen_width, screen_height, "Light ADS", nullptr, nullptr);
	if (!window)
	{
		cout << "GLFW create window failed,invoke glfwCreateWindow()......Error file:" << __FILE__ << "......Error line:" << __LINE__ << endl;
		glfwTerminate();
		exit(EXIT_FAILURE);
	}

	/*此函数使调用线程上的指定窗口的 OpenGL 或 OpenGL ES 上下文成为当前上下文。
	  一次只能在单个线程上使上下文成为当前上下文,并且每个线程一次只能有一个当前上下文。
	  在线程之间移动上下文时,必须先使其在旧线程上变为非当前状态,然后再在新线程上变为当前状态。
	*/
	glfwMakeContextCurrent(window);
	glfwSetKeyCallback(window, press_key_callback);
	glfwSetCursorPosCallback(window, mouse_move_callback);
	glfwSetScrollCallback(window, mouse_scroll_callback);
	glfwSetWindowSizeCallback(window, window_size_callback);

	int glewState = glewInit();
	if (GLEW_OK != glewState)
	{
		cout << "GLEW initialize failed,invoke glewInit()......Error file:" << __FILE__ << "......Error line:" << __LINE__ << endl;
		glfwTerminate();
		exit(EXIT_FAILURE);
	}

	/*此函数设置当前 OpenGL 或 OpenGL ES 上下文的交换间隔,即从调用glfwSwapBuffers开始等待的屏幕更新次数,
	  然后再交换缓冲区并返回。这有时称为垂直同步、垂直回扫同步或仅vsync。
	  支持WGL_EXT_swap_control_tear和GLX_EXT_swap_control_tear扩展的上下文也接受负交换间隔,这允许驱动程序立即交换,
	  即使帧到达有点晚。您可以使用glfwExtensionSupported检查这些扩展。
	  上下文必须在调用线程上是最新的。在没有当前上下文的情况下调用此函数将导致GLFW_NO_CURRENT_CONTEXT错误。
	  此功能不适用于 Vulkan。如果您使用 Vulkan 进行渲染,请改为查看交换链的当前模式。
	*/
	glfwSwapInterval(1);

	printf("%s\n", glGetString(GL_SHADING_LANGUAGE_VERSION));//开始初始化过程
	const GLubyte* renderer = glGetString(GL_RENDERER);
	const GLubyte* vendor = glGetString(GL_VENDOR);
	const GLubyte* version = glGetString(GL_VERSION);
	const GLubyte* glslVersion = glGetString(GL_SHADING_LANGUAGE_VERSION);
	GLint major, minor;
	glGetIntegerv(GL_MAJOR_VERSION, &major);
	glGetIntegerv(GL_MINOR_VERSION, &minor);
	printf("GL Vendor : %s\n", vendor);
	printf("GL Renderer : %s\n", renderer);
	printf("GL Version (string) : %s\n", version);
	printf("GL Version (integer) : %d.%d\n", major, minor);
	printf("GLSL Version : %s\n", glslVersion);

	glGetError(); // Debug GLEW bug fix

	/*默认情况下,出于性能考虑,所有顶点着色器的属性(Attribute)变量都是关闭的,
	  意味着数据在着色器端是不可见的,哪怕数据已经上传到GPU,由glEnableVertexAttribArray启用指定属性,
	  才可在顶点着色器中访问逐顶点的属性数据。glVertexAttribPointer或VBO只是建立CPU和GPU之间的逻辑连接,
	  从而实现了CPU数据上传至GPU。但是,数据在GPU端是否可见,即,着色器能否读取到数据,由是否启用了对应的属性决定,
	  这就是glEnableVertexAttribArray的功能,允许顶点着色器读取GPU(服务器端)数据。
	 */
	int nrAttributes;
	glGetIntegerv(GL_MAX_VERTEX_ATTRIBS, &nrAttributes);
	std::cout << "Maximum nr of vertex attributes supported: " << nrAttributes << std::endl;

	init(window);

	while (!glfwWindowShouldClose(window))
	{
		display(window, glfwGetTime());
		glfwSwapBuffers(window);
		glfwPollEvents();
	}

	glfwDestroyWindow(window);
	glfwTerminate();
	exit(EXIT_SUCCESS);

	return 0;
}

顶点着色器

#version 460 core

layout (location = 0) in vec3 vertPos;
layout (location = 1) in vec3 vertNorm;

out vec3 varyingNormal;
out vec3 varyingLightDir;
out vec3 varyingVertPos;
out vec3 varyingHalfVector;

struct PositionalLight
{
	vec4 ambient;
	vec4 diffuse;
	vec4 specular;
	vec3 position;
};

struct Material
{
	vec4 ambient;
	vec4 diffuse;
	vec4 specular;
	float shininess;
};

uniform vec4 globalAmbient;
uniform PositionalLight light;
uniform Material material;
uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
uniform mat4 norm_matrix;

void main()
{
	varyingVertPos = (proj_matrix * mv_matrix * vec4(vertPos, 1.f)).xyz;
	varyingLightDir = light.position - varyingVertPos;
	varyingNormal = (norm_matrix * vec4(vertNorm, 1.f)).xyz;

	gl_Position = proj_matrix * mv_matrix * vec4(vertPos, 1.f);
}

片元着色器

#version 460 core

in vec3 varyingNormal;
in vec3 varyingLightDir;
in vec3 varyingVertPos;
in vec3 varyingHalfVector;

out vec4 fragColor;

struct PositionalLight
{
	vec4 ambient;
	vec4 diffuse;
	vec4 specular;
	vec3 position;
};

struct Material
{
	vec4 ambient;
	vec4 diffuse;
	vec4 specular;
	float shininess;
};

uniform vec4 globalAmbient;
uniform PositionalLight light;
uniform Material material;

uniform mat4 mv_matrix;
uniform mat4 proj_matrix;
uniform mat4 norm_matrix;

void main()
{
	// normalize the light, normal, and view vectors:
	vec3 L = normalize(varyingLightDir);
	vec3 N = normalize(varyingNormal);
	vec3 V = normalize(varyingVertPos);

	// get the angle between the light and surface normal:
	float cosTheta = dot(L, N);

	// halfway vector varyingHalfVector was computed in the vertex shader,
	// and interpolated prior to reaching the fragment shader.
	// It is copied into variable H here for convenience later.
	//在顶点着色器中计算了中间向量varyingHalfVector,
    //并在到达片段着色器之前进行插值。
    //为了方便以后使用,这里将其复制到变量H中。
	vec3 H = normalize(varyingHalfVector);

	// get angle between the normal and the halfway vector
	float cosPhi = dot(H, N);

	// compute ADS contributions (per pixel):
	vec3 ambient = ((globalAmbient * material.ambient) + (light.ambient * material.ambient)).xyz;
	vec3 diffuse = (light.diffuse.xyz * material.diffuse.xyz) * max(cosTheta, 0.f);
	vec3 specular = light.specular.xyz * material.specular.xyz * pow(max(cosPhi, 0.f), material.shininess);
	fragColor = vec4((ambient + diffuse + specular), 1.f);
 }

运行效果

openGL光照_第1张图片

源码下载

源码下载地址

你可能感兴趣的:(openGL,openGL模拟光照,openGL环境光漫反射镜面光)