cudnn 7.5 linux x64,Ubuntu 18.04 N卡驱动安装+CUDA10.0+cuDNN7.5+Anaconda+Tensorflow-GPU

Ubuntu 18.04 N卡驱动安装+CUDA10.0+cuDNN7.5+Anaconda+Tensorflow-GPU步骤详解。

1.驱动安装

打开软件更新,点击附加驱动,选择N卡的驱动

首先添加源

$sudo add-apt-repository ppa:graphics-drivers/ppa

$sudo apt update

查看系统gpu设备

$ ubuntu-drivers devices

cudnn 7.5 linux x64,Ubuntu 18.04 N卡驱动安装+CUDA10.0+cuDNN7.5+Anaconda+Tensorflow-GPU_第1张图片

在此安装nvidia-driver-410,执行

$sudo apt-get install nvidia-driver-410

更改后重启电脑,查看GPU信息

cudnn 7.5 linux x64,Ubuntu 18.04 N卡驱动安装+CUDA10.0+cuDNN7.5+Anaconda+Tensorflow-GPU_第2张图片

cudnn 7.5 linux x64,Ubuntu 18.04 N卡驱动安装+CUDA10.0+cuDNN7.5+Anaconda+Tensorflow-GPU_第3张图片

至此驱动安装好了

2.cuda10.0安装

首先安装环境依赖

$sudo apt-get install freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libgl1-mesa-glx libglu1-mesa libglu1-mesa-dev

cudnn 7.5 linux x64,Ubuntu 18.04 N卡驱动安装+CUDA10.0+cuDNN7.5+Anaconda+Tensorflow-GPU_第4张图片

下载完之后进入到下载的文件夹中,安装

$ sudo sh cuda_10.0.130_410.48_linux.run

第一个提示选择no,其余的yes或者default

然后编辑环境变量,添加以下内容,并启用: source ~/.bashrc

export CUDA_HOME=/usr/local/cuda

export PATH=$PATH:$CUDA_HOME/bin

export LD_LIBRARY_PATH=/usr/local/cuda-10.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

之后,输入

$nvcc -V

显示如下内容表明安装成功

cudnn 7.5 linux x64,Ubuntu 18.04 N卡驱动安装+CUDA10.0+cuDNN7.5+Anaconda+Tensorflow-GPU_第5张图片

$cd /usr/local/cuda-9.0/samples

$sudo make

$./bin/x86_64/linux/release/deviceQuery

显示如下内容

cudnn 7.5 linux x64,Ubuntu 18.04 N卡驱动安装+CUDA10.0+cuDNN7.5+Anaconda+Tensorflow-GPU_第6张图片

3.cudnn7.5的安装

下载:https://developer.nvidia.com/rdp/cudnn-download

得到文件:cudnn-10.0-linux-x64-v7.5.0.56.tgz

进入到文件目录,执行

$ tar zxvf cudnn-10.0-linux-x64-v7.5.0.56.tgz

解压后得到 名为 cuda 的文件夹,需要将里面的几个文件拷贝到已安装的cuda文件夹下面,并赋予相应的权限

sudo cp cuda/include/cudnn.h /usr/local/cuda/include/

sudo cp cuda/lib64/libcudnn* /usr/local/cuda/lib64/

sudo chmod a+r /usr/local/cuda/include/cudnn.h

sudo chmod a+r /usr/local/cuda/lib64/libcudnn*

之后执行cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2

若显示以下内容表明安装成功

cudnn 7.5 linux x64,Ubuntu 18.04 N卡驱动安装+CUDA10.0+cuDNN7.5+Anaconda+Tensorflow-GPU_第7张图片

4.anaconda 安装

下载得到文件 Anaconda3-2018.12-Linux-x86_64.sh

在文件目录中,执行+

sudo sh Anaconda3-2018.12-Linux-x86_64.sh

出现如下选择yes

204a5f38831c141d7bcec8165fc35d5f.png

最后选择不安装vs code

安装完后需要执行source ~/.bashrc

anaconda换源:

制定清华的源:

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/

有资源显示源地址:

conda config --set show_channel_urls yes

5.tensorflow-gpu安装

安装前先安装bazel, 参见官方安装手册

安装完bazel后执行

conda install tensorflow-gpu

之后进入Python 环境 导入一下tensorflow,

import tensorflow as tf

tf.__version__

hello = tf.constant('hello tensorflow')

sess = tf.Session()

sess.run(hello)

cudnn 7.5 linux x64,Ubuntu 18.04 N卡驱动安装+CUDA10.0+cuDNN7.5+Anaconda+Tensorflow-GPU_第8张图片

0b1331709591d260c1c78e86d0c51c18.png

你可能感兴趣的:(cudnn,7.5,linux,x64)