1.Real-time Relevant Recommendation Suggestion
Author(Institute): Ruobing Xie
KeyWords:relevant recommendation
Dataset:RS-331M
2.Diverse User Preference Elicitation with Multi-Armed Bandits
Author(Institute): Filip Radlinski
KeyWords:preference elicitation; diversity; bandits
Dataset:Movielens; Amazon
3.User Response Models to Improve a REINFORCE Recommender System
Author(Institute): Minmin Chen
KeyWords: Auxiliary Tasks; User Response Models; Reinforcement Learning
4.A Black-Box Attack Model for Visually-Aware Recommenders
Author(Institute): Rami Cohen
KeyWords: Attacks; Adversarial Examples
Dataset: Amazon
5.Non-Clicks Mean Irrelevant? Propensity Ratio Scoring As a Correction
Author(Institute): Zhen Qin
KeyWords: Unbiased learning to rank; implicit feedback
Dataset: GMail
6.Unbiased Learning to Rank in Feeds Recommendation
Author(Institute): Li He; Dawei Yin
KeyWords: Feeds Recommendation; Learning to Rank; Unbiased Learning
Dataset: JD
7.Improving Cloud Storage Search with User Activity
Author(Institute): Rolf Jagerman
KeyWords: User activity logs; Learning to Rank
Dataset: Google Drive
8.Network for Sequential Recommendation
Author(Institute): Jianwei Zhang
KeyWords: Sequential recommendation; Sparse-interest network; Multi-interest extraction
Dataset: MovieLens Amazon; Taobao
9.DeepLight: Deep Lightweight Feature Interactions for Accelerating CTR Predictions in Ad Serving
Author(Institute): Junwei Pan
KeyWords: Deep acceleration; ad serving; structural pruning; preconditioner; lightweight models; fast inference; low memory
Dataset: Criteo; Avazu
10.Multi-Interactive Attention Network for Fine-grained Feature Learning in CTR Prediction
Author(Institute): Hao Qian
KeyWords: CTR Prediction; Interactive Attention Network
Dataset: Amazon
11.Bipartite Graph Embedding via Mutual Information Maximization
Author(Institute): Bin Wang
KeyWords: Bipartite Graph Embedding
Dataset: DBLP; ML-10; ML-1; Wikiped
12.Alleviating Cold-Start Problems in Recommendation through Pseudo-Labelling over Knowledge Graph
Author(Institute): Riku Togashi
KeyWords: knowledge graph; cold-start recommendation; knowledge-aware recommendation; graph neural networks; semi-supervised learning
Dataset: MovieLens1M; Last.FM; BookCrossing
13.Beyond Point Estimate: Inferring Ensemble Prediction Variation from Neuron Activation Strength in Recommender Systems
Author(Institute): Zhe Chen
KeyWords: Ensemble; Neuron Activation; Prediction Uncertainty
Dataset: MovieLens; Criteo
14.Combating Selection Biases in Recommender Systems with A Few Unbiased Ratings
Author(Institute): Xiaojie Wang
KeyWords: Biases
Dataset: Music; Coat
15.Learning User Representations with Hypercuboids for Recommender Systems
Author(Institute): Huoyu Liu
KeyWords: Hypercuboids; User Representation
Dataset: Amazon-Books; Amazon-Movies&TVs; AmazonCDs; E-commerce
16.Origin-Aware Next Destination Recommendation with Personalized Preference Attention
Author(Institute): Nicholas Lim
KeyWords: Spatio-Temporal
17.Practical Compositional Fairness: Understanding Fairness in Multi-Component Recommender Systems
Author(Institute): Xuezhi Wang
KeyWords: compositional fairness; ranking fairness
Dataset: the German Credit data
18.Enhancing Neural Recommender Models through Domain-Specific Concordance
Author(Institute): Ananth Balashankar
KeyWords: Domain-Specific Concordance
Dataset: MIMIC-III; MovieLens; Last.fm
19.Towards Long-term Fairness in Recommendation
Author(Institute): Junfeng Ge
KeyWords: Long-term Fairness; Reinforcement Learning; Constrained Policy Optimization; Unbiased Recommendation
Dataset: Movielens100K; Movielens1M
20.Causal Transfer Random Forest: Combining Logged Data and Randomized Experiments for Robust Prediction
Author(Institute): Murat Ali Bayir
KeyWords: Random forest;Causal learning;Transfer learning;Robust prediction models;Covariate shifts
21.Explanation as a Defense of Recommendation
Author(Institute): Hongbo Deng
KeyWords: Explainable Recommendation; Natural Language Generation; Sentiment Alignment
Dataset: Yelp; Ratebeer
22.Heterogeneous Graph Augmented Multi-Scenario Sharing Recommendation with Tree-Guided Expert Networks
Author(Institute): Bofang Li
KeyWords: Heterogeneous Graph; E-Commerce; Sharing Recommendation
Dataset: Taobao