本章将详细介绍如何使用libtorch自带的数据加载模块,使用该模块是实现模型训练的重要条件。除非这个数据加载模块功能不够,不然继承libtorch的数据加载类还是很有必要的,简单高效。
libtorch提供了丰富的基类供用户自定义派生类,torch::data::Dataset就是其中一个常用基类。使用该类需要明白基类和派生类,以及所谓的继承和多态。有c++编程经验者应该都不会陌生,为方便不同阶段读者就简单解释一下吧。类就是父亲,可以生出不同的儿子,生儿子叫派生或者继承(看使用语境),生不同的儿子就实现了多态。父亲就是基类,儿子就是派生类。现实中,父亲会把自身的一部分财产留下来养老,儿子们都不能碰,这就是private了,部分财产儿子能用,但是儿子的对象不能用,这叫protected,还有些财产谁都能用就是public。和现实中的父子类似,代码中,派生类可以使用父类的部分属性或者函数,全看父类怎样定义。
然后理解一下虚函数,就是父亲指定了部分财产是public的,但是是用来买房的,不同的儿子可以买不同的房子,可以全款可以贷款,这就是财产在父亲那就是virtual的。子类要继承这个virtual财产可以自己重新规划使用方式。
事实上,如果有过pytorch的编程经验者很快会发现,libtorch的Dataset类的使用和python下使用非常相像。pytorch自定义dataload,需要定义好Dataset的派生类,包括初始化函数__init__,获取函数__getitem__以及数据集大小函数__len__。类似的,libtorch中同样需要处理好初始化函数,get()函数和size()函数。
下面以分类任务为例,介绍libtorch的Dataset类的使用。使用pytorch官网提供的昆虫分类数据集,下载到本地解压。将该数据集根目录作为索引,实现Dataloader对图片的加载。
首先定义一个加载图片的函数,使用网上出现较多的c++遍历文件夹的代码,将代码稍作修改如下:
//遍历该目录下的.jpg图片
void load_data_from_folder(std::string image_dir, std::string type, std::vector &list_images, std::vector &list_labels, int label);
void load_data_from_folder(std::string path, std::string type, std::vector &list_images, std::vector &list_labels, int label)
{
long long hFile = 0; //句柄
struct _finddata_t fileInfo;
std::string pathName;
if ((hFile = _findfirst(pathName.assign(path).append("\\*.*").c_str(), &fileInfo)) == -1)
{
return;
}
do
{
const char* s = fileInfo.name;
const char* t = type.data();
if (fileInfo.attrib&_A_SUBDIR) //是子文件夹
{
//遍历子文件夹中的文件(夹)
if (strcmp(s, ".") == 0 || strcmp(s, "..") == 0) //子文件夹目录是.或者..
continue;
std::string sub_path = path + "\\" + fileInfo.name;
label++;
load_data_from_folder(sub_path, type, list_images, list_labels, label);
}
else //判断是不是后缀为type文件
{
if (strstr(s, t))
{
std::string image_path = path + "\\" + fileInfo.name;
list_images.push_back(image_path);
list_labels.push_back(label);
}
}
} while (_findnext(hFile, &fileInfo) == 0);
return;
}
修改后的函数接受数据集文件夹路径image_dir和图片类型image_type,将遍历到的图片路径和其类别分别存储到list_images和list_labels,最后lable变量用于表示类别计数。传入lable=-1,返回的lable值加一后等于图片类别。
定义dataSetClc,该类继承自torch::data::Dataset。定义私有变量image_paths和labels分别存储图片路径和类别,是两个vector变量。dataSetClc的初始化函数就是加载图片和类别。通过get()函数返回由图像和类别构成的张量列表。可以在get()函数中做任意针对图像的操作,如数据增强等。效果等价于pytorch中的__getitem__中的数据增强。
class dataSetClc:public torch::data::Dataset{
public:
int class_index = 0;
dataSetClc(std::string image_dir, std::string type){
load_data_from_folder(image_dir, std::string(type), image_paths, labels, class_index-1);
}
// Override get() function to return tensor at location index
torch::data::Example<> get(size_t index) override{
std::string image_path = image_paths.at(index);
cv::Mat image = cv::imread(image_path);
cv::resize(image, image, cv::Size(224, 224)); //尺寸统一,用于张量stack,否则不能使用stack
int label = labels.at(index);
torch::Tensor img_tensor = torch::from_blob(image.data, { image.rows, image.cols, 3 }, torch::kByte).permute({ 2, 0, 1 }); // Channels x Height x Width
torch::Tensor label_tensor = torch::full({ 1 }, label);
return {img_tensor.clone(), label_tensor.clone()};
}
// Override size() function, return the length of data
torch::optional size() const override {
return image_paths.size();
};
private:
std::vector image_paths;
std::vector labels;
};
下面使用定义好的数据加载类,以昆虫分类中的训练集作为测试,代码如下。可以打印加载的图片张量和类别。
int batch_size = 2;
std::string image_dir = "your path to\\hymenoptera_data\\train";
auto mdataset = myDataset(image_dir,".jpg").map(torch::data::transforms::Stack<>());
auto mdataloader = torch::data::make_data_loader(std::move(mdataset), batch_size);
for(auto &batch: *mdataloader){
auto data = batch.data;
auto target = batch.target;
std::cout<
分享不易,如果有用请不吝给我一个,转载注明出处:Allent's Blogs
代码见LibtorchTutorials