部署模型之Libtorch学习(一)

Q : Libtorch是什么及为什么用Libtorch?
A : Libtorch是pytorch的C++版本,现在的很多大型项目都是用C++写的,想使用训练好的模型,需要通过caffe等方式去集成,比较麻烦。这里pytorch官方提出了Libtorch,我们就可以把pytorch训练好的模型,打包起来,直接在C++工程中去用就好了,相比较caffe等,非常方便!

使用Libtorch的大体流程:

  1. 将训练好的模型打包,保存为.pt格式
  2. 使用Libtorch去加载.pt格式模型

1. Libtorch安装

  1. pytorch官网上下载libtorch各个版本的url(1.0 - 1.4)
  2. 1.5版本官网下载就好
    注:安装时尽量pytorch版本和libtorch版本保持一致

2. 转换模型

import torch
import torchvision

# An instance of your model.
model = torchvision.models.resnet18(pretrained=True)

# An example input you would normally provide to your model's forward() method.
example = torch.rand(1, 3, 224, 224)

# Use torch.jit.trace to generate a torch.jit.ScriptModule via tracing.
traced_script_module = torch.jit.trace(model, example)
traced_script_module.save("traced_resnet18_model.pt")

# test module
output = traced_script_module(torch.ones(1, 3, 224, 224))
print(output[0, :5])

3. C ++中使用模型

  1. 新建一个C++工程 example-app
  2. 新建main.cpp,编写如下:
#include  // One-stop header.

#include 
#include 

int main(int argc, const char* argv[]) {
    if (argc != 2) {
        std::cerr << "usage: example-app \n";
        return -1;
    }


    torch::jit::script::Module module;
    try {
        // Deserialize the ScriptModule from a file using torch::jit::load().
        module = torch::jit::load(argv[1]);
    }
    catch (const c10::Error& e) {
        std::cerr << "error loading the model\n";
        return -1;
    }

    std::cout << "ok\n";
}
  1. 新建Cmakelists.txt,编写如下:
cmake_minimum_required(VERSION 3.14.5)
project(example-app)			

list(APPEND CMAKE_PREFIX_PATH "/data/home/depwang/source/libtorch")	
list(APPEND CMAKE_PREFIX_PATH "/data/home/depwang/opencv3")	

find_package(Torch REQUIRED)	
find_package(OpenCV REQUIRED)	

set(CMAKE_CXX_STANDARD 14)		


add_executable(example-app main.cpp)		
target_link_libraries(example-app "${TORCH_LIBRARIES}")		
target_link_libraries(example-app "${OpenCV_LIBS}")			
set_property(TARGET example-app PROPERTY CXX_STANDARD 14)
  1. 编译
mkdir build	&& cd build 	#创建并进入build文件夹
cmake ..	#根据CMakeLists.txt编译生成makefile文件
make		#根据makefile编译项目
  1. 将2中的"traced_resnet18_model.pt"复制到build下,执行
    ./example-app traced_resnet18_model.pt ; 会打印出ok,代表配置成功
  2. 修改main.cpp,如下:
#include  // One-stop header.

#include 
#include 

int main(int argc, const char* argv[]) {
    if (argc != 2) {
        std::cerr << "usage: example-app \n";
        return -1;
    }


    torch::jit::script::Module module;
    try {
        // Deserialize the ScriptModule from a file using torch::jit::load().
        module = torch::jit::load(argv[1]);
    }
    catch (const c10::Error& e) {
        std::cerr << "error loading the model\n";
        return -1;
    }
    // Create a vector of inputs.
	std::vector<torch::jit::IValue> inputs;
	inputs.push_back(torch::ones({1, 3, 224, 224}));
	
	// Execute the model and turn its output into a tensor.
	at::Tensor output = module.forward(inputs).toTensor();
	std::cout << output.slice(/*dim=*/1, /*start=*/0, /*end=*/5) << '\n';

    std::cout << "ok\n";
}

  1. 重新编译,执行
#在build文件夹下
cmake ..
make
./example-app traced_resnet18_model.pt

参考:https://blog.csdn.net/guilutian0541/article/details/104729895

你可能感兴趣的:(项目)