这里主要用ubuntu18.04对caffe环境进行搭建,之前用windows搭建过caffe的环境但是还需要安装onnx的库,windows内存不太够用了,我也就不敢再瞎捣鼓了,于是乎我就用windows原先安装好的pytorch环境进行pytorch转onnx,用ubuntu进行onnx转caffe。
这里的ubuntu系统是我在阿里云租的一个服务器,因为第一次租有优惠很便宜。。。。反正比某迅的会员便宜。
这里用到的训练代码是yolov5
以下这些我是在windows下的pytorch环境实现的。
将opset_version=12改为opset_version=10(大约在72行左右)
python models/export.py --weights weights/yolov5s.pt --img 640 --batch 1
( --weights 后面跟你们自己训练好的模型)
很多时候,很多节点比如cast节点,Identity 这些节点可能都不需要,所以我们需要进行简化。
安装简化器
pip install onnx-simplifier
简化onnx模型
python -m onnxsim weights/yolov5s.onnx(简化前的模型名字与存放地址) weights/yolov5s_sim.onnx (简化后的模型名字与存放地址)
如果不做简化会报这个错
TypeError: ONNX node of type Clip is not supported.
在yolov5训练之前最好是改一下网络层,要不会报这个错。
Traceback (most recent call last):
File "convertCaffe.py", line 159, in <module>
convertToCaffe(graph, prototxt_path, caffemodel_path, exis_focus=True, focus_concat_name="Concat_40", focus_conv_name="Conv_41")
File "convertCaffe.py", line 83, in convertToCaffe
layer = converter_fn(node, graph, err)
File "/home/admin/code/yolov5_onnx2caffe/onnx2caffe/_operators.py", line 505, in _convert_resize
height_scale = scales[2]
IndexError: index 2 is out of bounds for axis 0 with size 0
因为我用的是yolov5s模型所以更改yolov5/models/yolov5s.yaml
将yolov5的focus层替换为conv层(stride为2),upsample层替换为deconv层
(反卷积层),因为caffe不支持focus层。
# parameters
nc: 4 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
# anchors
anchors:
- [10,13, 16,30, 33,23] # P3/8
- [30,61, 62,45, 59,119] # P4/16
- [116,90, 156,198, 373,326] # P5/32
# YOLOv5 backbone
backbone:
# [from, number, module, args]
#[[-1, 1, Focus, [64, 3]], # 0-P1/2
[[-1, 1, Conv, [64, 3, 2]], # 0-P1/2
[-1, 1, Conv, [128, 3, 2]], # 1-P2/4
[-1, 3, C3, [128]],
[-1, 1, Conv, [256, 3, 2]], # 3-P3/8
[-1, 9, C3, [256]],
[-1, 1, Conv, [512, 3, 2]], # 5-P4/16
[-1, 9, C3, [512]],
[-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
[-1, 1, SPP, [1024, [5, 9, 13]]],
[-1, 3, C3, [1024, False]], # 9
]
# YOLOv5 head
head:
[[-1, 1, Conv, [512, 1, 1]],
#[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[-1, 1, nn.ConvTranspose2d, [256,256,2,2]],
[[-1, 6], 1, Concat, [1]], # cat backbone P4
[-1, 3, C3, [512, False]], # 13
[-1, 1, Conv, [256, 1, 1]],
#[-1, 1, nn.Upsample, [None, 2, 'nearest']],
[-1, 1, nn.ConvTranspose2d, [128,128,2,2]],
[[-1, 4], 1, Concat, [1]], # cat backbone P3
[-1, 3, C3, [256, False]], # 17 (P3/8-small)
[-1, 1, Conv, [256, 3, 2]],
[[-1, 14], 1, Concat, [1]], # cat head P4
[-1, 3, C3, [512, False]], # 20 (P4/16-medium)
[-1, 1, Conv, [512, 3, 2]],
[[-1, 10], 1, Concat, [1]], # cat head P5
[-1, 3, C3, [1024, False]], # 23 (P5/32-large)
[[17, 20, 23], 1, Detect, [nc, anchors]], # Detect(P3, P4, P5)
]
参考博客:https://blog.csdn.net/sinat_38439143/article/details/97244296
Ubuntu18.04
python3.6(ubuntu18.04自带的python3)
cpu(带GPU的服务器太贵了。。。。。租不起)
这里使用的远程文件传输软件是filezilla
从windows拷贝文件到ubuntu服务器上后需要对文件夹进行权限修改否则没办法对文件进行修改。
sudo chmod a+rwx -R 需要加权限的文件夹
(权限不够报错:PermissionError: [Errno 13] Permission denied)
sudo apt-get update
sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install python-dev
sudo apt-get install libatlas-base-dev
sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
sudo apt-get install python-opencv
在命令窗输入python,假如打开的不是python3.6,
需要软连接python3.6到python
sudo ln -s /usr/bin/python3.6 /usr/bin/python
安装python的onnx库
pip install onnx
我曾经为了简单直接安装了caffe的python库(sudo apt install caffe-cpu)但是最后要改源码我找不到库在哪,最后卸了python的caffe库又安装了caffe的源码。
git clone git://github.com/BVLC/caffe.git
1.去掉CPU_ONLY :=1的注释
2.注释掉CUDA有关的行:
#CUDA_DIR := /usr/local/cuda
#CUDA_DIR := /usr
#CUDA_ARCH := ....
#TEST_GPUID := 0
3.去掉WITH_PYTHON_LAYER := 1的注释
4.修改这一行:
# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include /usr/include/hdf5/serial/
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib /usr/lib/x86_64-linux-gnu /usr/lib/x86_64-linux-gnu/hdf5/serial
5.修改python的版本
将
PYTHON_INCLUDE := /usr/include/python2.7 \
/usr/lib/python2.7/dist-packages/numpy/core/include
改成
PYTHON_INCLUDE := /usr/include/python3.6 \
/usr/lib/python3.6/dist-packages/numpy/core/include
1.opencv_core opencv_highgui opencv_imgproc opencv_imgcodecs
后面加入 opencv_imgcodecs
2. 找到LIBRARIES +=glog gflags protobuf boost_system boost_filesystem m hdf5_hl hdf5
更改最后两项为:
LIBRARIES +=glog gflags protobuf boost_system boost_filesystem m hdf5_serial_hl hdf5_serial
3.修改python版本
将
PYTHON_LIBRARIES := boost_python python2.7
改成
PYTHON_LIBRARIES := boost_python-py36 #py36需要改为你自己的python版本,如py35,py37(208行左右)
caffe源码不支持这两个层所以需要添加。
如果不添加会报这个错
参考博客:https://blog.csdn.net/ynzzxc/article/details/116931806
Traceback (most recent call last):
File "convertCaffe.py", line 122, in <module>
convertToCaffe(graph, opset_version, prototxt_path, caffemodel_path)
File "convertCaffe.py", line 79, in convertToCaffe
layers[id] = layer._to_proto()
File "/home/ubuntu/ONNXToCaffe-master/MyCaffe.py", line 100, in _to_proto
assign_proto(layer, k, v)
File "/home/ubuntu/ONNXToCaffe-master/MyCaffe.py", line 29, in assign_proto
is_repeated_field = hasattr(getattr(proto, name), 'extend')
AttributeError: permute_param
下载caffe_plus源码
git clone https://github.com/jnulzl/caffe_plus.git
#将caffe_plus/include/caffe/layers/upsample_layer.hpp
caffe_plus/include/caffe/layers/permute_layer.hpp
#复制到caffe/include/caffe/layers/
#将caffe_plus/src/caffe/layers/upsample_layer.cpp
caffe_plus/src/caffe/layers/upsample_layer.cu
caffe_plus/src/caffe/layers/permute_layer.cpp
caffe_plus/src/caffe/layers/permute_layer.cu
#复制到caffe/src/caffe/layers/
# 修改caffe.proto文件
vim caffe/src/caffe/proto/caffe.proto
在optional WindowDataParameter window_data_param = 129;(约第423行)后增加代码:
optional PermuteParameter permute_param = 150;
optional UpsampleParameter upsample_param = 151;
在末尾增加代码:
message PermuteParameter {
// The new orders of the axes of data. Notice it should be with
// in the same range as the input data, and it starts from 0.
// Do not provide repeated order.
repeated uint32 order = 1;
}
message UpsampleParameter {
optional int32 height = 1 [default = 32];
optional int32 width = 2 [default = 32];
optional int32 height_scale = 3 [default = 2];
optional int32 width_scale = 4 [default = 2];
enum UpsampleOp {
NEAREST = 0;
BILINEAR = 1;
}
optional UpsampleOp mode = 5 [default = BILINEAR];
}
(服务器操作需要权限加sudo)
cd caffe
sudo make all
sudo make test
sudo make runtest
安装依赖库
cd caffe/python
for req in $(cat requirements.txt); do pip install $req; done
添加 PYTHONPATH环境变量
sudo gedit /etc/profile
export PYTHONPATH=$PYTHONPATH:/home/XXX/caffe/python:$PYTHONPATH # xxx为用户名
$ source /etc/profile
编译
在caffe目录下
sudo make pycaffe
admin@iZbp1j0uggzced8qupgb5rZ:~$ python
Python 3.6.9 (default, Jan 26 2021, 15:33:00)
[GCC 8.4.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import caffe
>>>
这里我用到的onnx转caffe代码是: https://github.com/Wulingtian/yolov5_onnx2caffe
更改yolov5_onnx2caffe/convertCaffe.py
设置onnx_path(上面转换得到的onnx简化后的模型)
prototxt_path(caffe的prototxt保存路径)
caffemodel_path(caffe的caffemodel保存路径)
onnx_path = "/home/admin/code/yolov5_onnx2caffe/weights/yolov5s_sim.onnx"
prototxt_path = "/home/admin/code/yolov5_onnx2caffe/weights/yolov5s_sim.pro
totxt"
caffemodel_path = "/home/admin/code/yolov5_onnx2caffe/weights/yolov5s_sim.c
affemodel"
2021.6.21