import torch
a = torch.tensor(5)
print(a) # tensor(5)
print(a.item()) # 5
import torch
# 预测概率 此处有两个输入。每行代表一个输入图片的预测输出。例如第一行代表:为第0种种类的概率为0.1,为第1种种类的概率为0.2
outputs = torch.tensor([[0.1, 0.2],
[0.3, 0.4]])
# 预测结果
preds = outputs.argmax(1) # tensor([1, 1]) 参数1表示横向看。表示的意思是:每行的概率匹配。 比如这里代表两个图片都是第一种种类
# 真实结果
targets = torch.tensor([0, 1]) # 这是真实结果
# 准确个数
print((preds == targets).sum()) # 表示我们的预测是否准确。为false + true = 1
# 搭建神经网络
import torch
from torch import nn
class cifar_model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
if __name__ == '__main__':
# 可以利用这里进行测试
test_cifar = cifar_model()
input = torch.ones((64, 3, 32, 32))
output = test_cifar(input)
print(output.shape) # torch.Size([64, 10]) # 检查模型的正确性
训练train.py
import torch
import torchvision
from tensorboardX import SummaryWriter
from torch import nn
from torch.utils.data import DataLoader
from cifar_src.model import *
# 准备数据集
train_data = torchvision.datasets.CIFAR10("../cifar_data", train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10("../cifar_data", train=False, transform=torchvision.transforms.ToTensor(), download=True)
# length 长度
train_data_size = len(train_data) # 50000
test_data_size = len(test_data) # 10000
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用Dataloader来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
cifarr = cifar_model()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(cifarr.parameters(), lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("../cifar_log")
for i in range(epoch):
print("————————第{}轮训练开始————————".format(i+1))
# 训练步骤开始
cifarr.train()
for data in train_dataloader:
imgs, targets = data
outputs = cifarr(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
optimizer.zero_grad() # 优化器梯度清零
loss.backward() # 反向传播,计算梯度
optimizer.step() # 根据梯度和优化器,更新权重
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
print("训练次数:{}, Loss:{}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 验证步骤
cifarr.eval()
total_test_loss = 0
total_accuracy = 0 # 总体的准确率
with torch.no_grad(): # 强制之后的内容不进行计算图构建
for data in test_dataloader:
imgs, targets = data
outputs = cifarr(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
total_test_step = total_test_step + 1
torch.save(cifarr, "cifar_{}.pth".format(i))
print("模型已保存")
writer.close()
利用GPU训练的方法:
对网络模型、数据(输入,标注)、损失函数调用.cuda
加入GPU的完整代码
import time
import torch
import torchvision
from tensorboardX import SummaryWriter
from torch import nn
from torch.utils.data import DataLoader
# 准备数据集
train_data = torchvision.datasets.CIFAR10("../cifar_data", train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10("../cifar_data", train=False, transform=torchvision.transforms.ToTensor(), download=True)
# length 长度
train_data_size = len(train_data) # 50000
test_data_size = len(test_data) # 10000
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用Dataloader来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
class cifar_model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
cifarr = cifar_model()
if torch.cuda.is_available():
cifarr = cifarr.cuda()
# 损失函数
loss_fn = nn.CrossEntropyLoss()
if torch.cuda.is_available():
loss_fn = loss_fn.cuda()
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(cifarr.parameters(), lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("../cifar_log")
start_time = time.time()
for i in range(epoch):
print("————————第{}轮训练开始————————".format(i+1))
# 训练步骤开始
cifarr.train()
for data in train_dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
outputs = cifarr(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
optimizer.zero_grad() # 优化器梯度清零
loss.backward() # 反向传播,计算梯度
optimizer.step() # 根据梯度和优化器,更新权重
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
end_time = time.time()
print(end_time-start_time)
print("训练次数:{}, Loss:{}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 验证步骤
cifarr.eval()
total_test_loss = 0
total_accuracy = 0 # 总体的准确率
with torch.no_grad(): # 强制之后的内容不进行计算图构建
for data in test_dataloader:
imgs, targets = data
if torch.cuda.is_available():
imgs = imgs.cuda()
targets = targets.cuda()
outputs = cifarr(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
total_test_step = total_test_step + 1
torch.save(cifarr, "cifar_{}.pth".format(i))
print("模型已保存")
writer.close()
import time
import torch
import torchvision
from tensorboardX import SummaryWriter
from torch import nn
from torch.utils.data import DataLoader
# 定义训练的设备
# device = torch.device("cuda")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 准备数据集
train_data = torchvision.datasets.CIFAR10("../cifar_data", train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10("../cifar_data", train=False, transform=torchvision.transforms.ToTensor(), download=True)
# length 长度
train_data_size = len(train_data) # 50000
test_data_size = len(test_data) # 10000
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用Dataloader来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
class cifar_model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
cifarr = cifar_model()
cifarr = cifarr.to(device)
# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(cifarr.parameters(), lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("../cifar_log")
start_time = time.time()
for i in range(epoch):
print("————————第{}轮训练开始————————".format(i+1))
# 训练步骤开始
cifarr.train()
for data in train_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = cifarr(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
optimizer.zero_grad() # 优化器梯度清零
loss.backward() # 反向传播,计算梯度
optimizer.step() # 根据梯度和优化器,更新权重
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
end_time = time.time()
print(end_time-start_time)
print("训练次数:{}, Loss:{}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 验证步骤
cifarr.eval()
total_test_loss = 0
total_accuracy = 0 # 总体的准确率
with torch.no_grad(): # 强制之后的内容不进行计算图构建
for data in test_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = cifarr(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
total_test_step = total_test_step + 1
torch.save(cifarr, "cifar_{}.pth".format(i))
print("模型已保存")
writer.close()
注意,如果是用GPU训练的网络结构进行测试,那测试时输入的图片也要用cuda
否则会报这个错
正确完整代码:
test.py
from PIL import Image
import time
import torch
import torchvision
from tensorboardX import SummaryWriter
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
imgae_path = "../cifar_img/dog3.jpg"
image = Image.open(imgae_path)
image = image.convert('RGB')
transform = torchvision.transforms.Compose([transforms.Resize((32, 32)), transforms.ToTensor()])
image = transform(image)
print(image.shape) # 因为cifar网络要求输入32*32的图片
class cifar_model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
model = torch.load("cifar_9.pth")
print(model)
image = torch.reshape(image, (1, 3, 32, 32))
image = image.to(device)
model.eval()
with torch.no_grad():
output = model(image)
print(output)
print(output.argmax(1))
# 搭建神经网络
import torch
from torch import nn
class cifar_model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
if __name__ == '__main__':
test_cifar = cifar_model()
input = torch.ones((64, 3, 32, 32))
output = test_cifar(input)
print(output.shape) # torch.Size([64, 10]) # 检查模型的正确性
import time
import torch
import torchvision
from tensorboardX import SummaryWriter
from torch import nn
from torch.utils.data import DataLoader
# 定义训练的设备
# device = torch.device("cuda")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# 准备数据集
train_data = torchvision.datasets.CIFAR10("../cifar_data", train=True, transform=torchvision.transforms.ToTensor(), download=True)
test_data = torchvision.datasets.CIFAR10("../cifar_data", train=False, transform=torchvision.transforms.ToTensor(), download=True)
# length 长度
train_data_size = len(train_data) # 50000
test_data_size = len(test_data) # 10000
print("训练数据集的长度为:{}".format(train_data_size))
print("测试数据集的长度为:{}".format(test_data_size))
# 利用Dataloader来加载数据集
train_dataloader = DataLoader(train_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)
# 创建网络模型
class cifar_model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
cifarr = cifar_model()
cifarr = cifarr.to(device)
# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device)
# 优化器
learning_rate = 1e-2
optimizer = torch.optim.SGD(cifarr.parameters(), lr=learning_rate)
# 设置训练网络的一些参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("../cifar_log")
start_time = time.time()
for i in range(epoch):
print("————————第{}轮训练开始————————".format(i+1))
# 训练步骤开始
cifarr.train()
for data in train_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = cifarr(imgs)
loss = loss_fn(outputs, targets)
# 优化器优化模型
optimizer.zero_grad() # 优化器梯度清零
loss.backward() # 反向传播,计算梯度
optimizer.step() # 根据梯度和优化器,更新权重
total_train_step = total_train_step + 1
if total_train_step % 100 == 0:
end_time = time.time()
print(end_time-start_time)
print("训练次数:{}, Loss:{}".format(total_train_step, loss.item()))
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 验证步骤
cifarr.eval()
total_test_loss = 0
total_accuracy = 0 # 总体的准确率
with torch.no_grad(): # 强制之后的内容不进行计算图构建
for data in test_dataloader:
imgs, targets = data
imgs = imgs.to(device)
targets = targets.to(device)
outputs = cifarr(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print("整体测试集上的loss:{}".format(total_test_loss))
print("整体测试集上的正确率:{}".format(total_accuracy/test_data_size))
writer.add_scalar("test_loss", total_test_loss, total_test_step)
writer.add_scalar("test_accuracy", total_accuracy/test_data_size, total_test_step)
total_test_step = total_test_step + 1
torch.save(cifarr, "cifar_{}.pth".format(i))
print("模型已保存")
writer.close()
from PIL import Image
import time
import torch
import torchvision
from tensorboardX import SummaryWriter
from torch import nn
from torch.utils.data import DataLoader
from torchvision import transforms
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
imgae_path = "../cifar_img/dog3.jpg"
image = Image.open(imgae_path)
image = image.convert('RGB')
transform = torchvision.transforms.Compose([transforms.Resize((32, 32)), transforms.ToTensor()])
image = transform(image)
print(image.shape) # 因为cifar网络要求输入32*32的图片
class cifar_model(nn.Module):
def __init__(self) -> None:
super().__init__()
self.model1 = nn.Sequential(
nn.Conv2d(3, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, padding=2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, padding=2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
model = torch.load("cifar_9.pth")
print(model)
image = torch.reshape(image, (1, 3, 32, 32))
image = image.to(device)
model.eval()
with torch.no_grad():
output = model(image)
print(output)
print(output.argmax(1))