- USB串口通信、握手协议、深度学习等技术要点
深度学习教程,
深度学习人工智能网络协议
基于OpenMV的智能车牌识别系统:从硬件到算法的完整实现前言本文将详细介绍一个基于OpenMV微控制器的智能车牌识别系统的设计与实现。该系统集成了嵌入式视觉处理、串口通信协议、深度学习OCR识别等多种技术,实现了从图像采集到车牌识别的完整流程。系统架构概述整体设计思路该车牌识别系统采用分布式架构设计,将计算密集型任务与嵌入式控制分离:┌─────────────┐USB串口通信┌────────
- 【0425读书感悟】3366-引力-HR-合肥
精力满满
书名:《思维导图》作者:东尼·博赞金句:在做出选择之前,思维导图对理清思路是一个特别有用的工具。分享:思维导图能让大脑马上接受一系列复杂而又相互联系的信息,问题的重点一目了然。它们能给大脑带来一个事先构造好的框架,以便于产生联想,确保所有相关的因素都被考虑进去。尤其到图中的色彩和图像,把一些重要的情感因素考虑到决策中去,有助于突出重要的比较点。在整体决策的时候,思维导图可以帮你平衡彼此冲突的一些因
- 初识opencv
文章目录1.什么opencv,它的优势点2.opencv安装和环境配置3.了解数字图像的基本概念:像素、彩色图像、灰度图像、二值图像、图像算数操作4.练习numpy中array的基本操作5.练习图像的加载、保存、以及算术操作参考文献1.什么opencv,它的优势点OpenCV是Intel®开源计算机视觉库。它由一系列C函数和少量C++类构成,实现了图像处理和计算机视觉方面的很多通用算法。OpenC
- 基于ArcPy将HDF格式栅格文件批量转为TIFF格式
疯狂学习GIS
本文介绍基于Python中ArcPy模块,实现大量HDF格式栅格图像文件批量转换为TIFF格式的方法。 首先,来看看我们想要实现的需求。 在一个名为HDF的文件夹下,有五个子文件夹;每一个子文件夹中,都存储了大量的.hdf格式的栅格遥感影像数据。 我们在其中任选一个子文件夹,来看看其中所含的文件。 我们要做的,就是将HDF文件夹下的全部子文件夹中的全部.hdf格式图像文件,一次性转换为
- Python --- day 10 Opencv模块的使用
AnAn__kang
pythonopencv开发语言
系列文章目录前言今天博主带大家进入Opencv的学习,这是一个专门针对处理图像和视频的一个模块,大家以理解为主,增强自己的编程思维,再后续我们训练模型时会大批量的处理图片时会经常用到这个模块。1OpenCV介绍OpenCV(开放源代码计算机视觉库)是一个开源的计算机视觉和机器学习软件库。由一系列C++类和函数构成,用于图像处理、计算机视觉领域的算法实现。1.1OpenCV优势**开源免费:**完全
- 深度学习图像分类数据集—百种病虫害分类
AI街潜水的八角
深度学习图像数据集深度学习分类人工智能
该数据集为图像分类数据集,适用于ResNet、VGG等卷积神经网络,SENet、CBAM等注意力机制相关算法,VisionTransformer等Transformer相关算法。数据集信息介绍:百种病虫害识别分类,训练集45095张,验证集7508张,测试集22619张具体类别为以下:insect_classes=["rice_leaf_roller","rice_leaf_caterpillar
- 草莓叶片病害识别与分类数据集
qq_38220914
分类数据挖掘人工智能
草莓作为一种重要的经济作物,在全球范围内广泛种植。然而,草莓生产过程中常常受到各种病害的困扰,其中叶片病害尤为严重。为了有效识别、检测和分类草莓叶片病害,构建一个高质量的数据集是至关重要的。本文介绍了一个针对草莓叶片病害识别检测与分类的数据集,该数据集涵盖了多种草莓叶片病害类型,包括白粉病、灰霉病、炭疽病、蛇眼病、叶斑病、黄萎病和根腐病。数据集构建过程中,采用了严格的图像采集、标注和预处理流程,确
- 植物病害识别:YOLO甘蔗叶片病害识别分类数据集
YOLO甘蔗叶片病害识别数据集,包含尾孢菌叶斑病,眼斑病,健康,红腐病,锈病,黄叶病6个常见病类别,3300多张图像,yolo标注完整,全部原始图像,应用数据增强。适用于CV项目,毕设,科研,实验等需要此数据集或其他任何数据集请私信
- 基于小样本学习的图像分类综述
cdyyyyyyy
学习分类机器学习
目录引言基本概念小样本学习方法分类1、数据增强2、迁移学习3、元学习小样本学习主流方法1、基于度量的小样本学习2、基于Pretraining+FineTuning的方法3、基于元学习的小样本学习总结引言因为课程设计要求,所以进行了关于小样本学习的调研。目前小样本学习还是一个比较热门的研究,很多关于小样本学习的论文也陆续发表。本文只是一个概述,具体方法研究还有待深入。基本概念小样本学习(FSL:Fe
- InPixio Photo Maximizer(图片无损放大软件) v5.3.8625 便携版
InPixioPhotoMaximizer是一款用于放大和增强照片的软件。它提供了一系列功能和特点,使用户能够通过增大分辨率和细节来改善照片的质量和清晰度。软件功能图像放大:通过使用高级算法,可以将照片放大到原始分辨率的4倍,而保持良好的清晰度和细节。细节增强:通过增加图像的细节和锐度,可以改善照片的质量,并使图像更加清晰和逼真。手动调整:用户可以使用软件的手动调整工具,根据自己的需求进行尺寸和细
- 【扩散模型】正向扩散过程(Forward Diffusion)
爱吃羊的老虎
深度学习生成式模型机器学习人工智能深度学习python
0.Diffusion模型是什么?DiffusionModel(扩散模型)是一类生成模型,可以从随机噪声逐步“还原”出高质量数据(如图像),其核心思想是:正向过程把数据逐步加噪变成纯噪声,反向过程学会从噪声中一步步“去噪”还原出原始数据。正向扩散过程(ForwardDiffusion)输入原始数据(如一张图像x0x_0x0);按照某个“时间步数”t=1,2,...,Tt=1,2,...,Tt=1,
- c++读取文件中图像信息并用opencv展示
送分童子笑嘻嘻
#include#include#include#include#include#include#include//usingnamespacestd;usingnamespacecv;//字符串分割函数,std::vectorsplit(std::stringstr,std::stringpattern){std::string::size_typepos;std::vectorresult;s
- 量子生成对抗网络:量子计算与生成模型的融合革命
牧之112
量子计算生成对抗网络人工智能
引言:当生成对抗网络遇上量子计算在人工智能与量子计算双重浪潮的交汇处,量子生成对抗网络(QuantumGenerativeAdversarialNetworks,QGAN)正成为突破经典算力瓶颈的关键技术。传统生成对抗网络(GAN)在图像生成、数据增强等领域已取得辉煌成就,但其参数规模与计算复杂度随着数据维度呈指数级增长。量子计算的叠加性、纠缠性和并行性,为解决这一矛盾提供了全新思路。2025年,
- 喷丝板检测软件上位机开发
深圳市由你创科技
上位机开发c#qt
一、核心功能模块1、硬件控制运动控制:通过Modbus/RS485/EtherCAT控制高精度电移台(需±1μm精度),实现喷丝板XY轴扫描定位。光源控制:调节环形LED/同轴光源亮度(支持PWM或0-10V模拟信号),优化成像对比度。相机控制:支持GigE/USB3Vision相机(建议500万像素以上),触发采集、参数调节(曝光/增益)。2、机器视觉检测孔洞识别:使用OpenCV的HoughC
- 【教程4>第9章>第8节】通过FPGA实现RGB图像转换为CMYK图像——verilog实现与MATLAB辅助验证
fpga和matlab
#fpga开发CMYKRGB教程4verilog
本课程学习成果预览(FPGA测试结果通过MATLAB显示)目录1.软件版本2.通过FPGA实现RGB图像转CMYK3.RGB图像转CMYK的测试3.1步骤一:生成测试样本3.2步骤二:通过testbench调用X2.bmp3.3步骤三:vivado仿真3.4步骤四:MATLAB辅助验证4.视频操作步骤演示欢迎订阅FPGA/MATLAB/Simulink系列教程《★教程1:matlab入门100例》
- pytorch图像分类全流程(二)
前人栽树,后人乘凉
datawhalepytorchpytorch分类python
本次使用的是ImageNet1000类别信息,resnet18预训练模型。记录一些一坑和知识点。在传入图片或视频之前我们都会对其进行预处理,归纳下来为四个字母RCTN:缩放、裁剪、转Tensor、归一化,可以使用transforms.Compose()函数打包对应四个函数进行预处理,当然这里有个小坑,transforms.Compose()只接受pillow格式的图像,不能拿opencv传入图片。
- PyTorch图像分类系列——流程概览
VAMOT
PyTorch图像分类系列pytorch深度学习分类计算机视觉
一、加载数据1.使用torchvision.datasets的方法加载经典数据集在此网址查看支持哪些经典数据集:Datasets—Torchvision0.18documentation(pytorch.org)data_train=torchvision.datasets.CIFAR10(root="CIFAR10",train=True,transform=ToTensor(),target_
- ai绘画生成软件哪个好?几款好用的AI绘画软件分享!
呼酱小宝箱
随着人工智能技术的不断发展,越来越多的AI绘画生成软件被开发出来。这些软件利用深度学习技术,可以将普通照片或图像转化成具备艺术效果的画作。那么,ai绘画生成软件哪个好?首先,让我们来看一下几个常见的AI绘画生成软件,它们分别是:1、DeepDreamDeepDream是由Google开发的一款AI绘画生成软件。它通过卷积神经网络对输入的图片进行处理,从而生成出具有艺术风格的画作。DeepDream
- Pytorch图像二分类代码 AlexNet
望舒向晚
Pytorchpytorch深度学习机器学习
importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorch.utils.dataimporttorch.nn.functionalasFimporttorchvisionfromtorchvisionimporttransformsfromPILimportImagedefcheck_image(path):try:im=Ima
- 基于逻辑回归的图像二分类算法实现(Pytorch版)
哎呦哥哥、
图像分类pytorch逻辑回归分类
基于逻辑回归的图像二分类算法实现(Pytorch版)数据集模型代码数据集链接:FastFoodClassificationDataset我们只使用Burger和Pizza这两类。模型代码importtorchimporttorch.nnasnnfromtorchvision.models.utilsimportload_state_dict_from_urlmodel_urls={'resnet5
- 生成式 AI:从 “理解” 到 “创造” 的突破
田园Coder
人工智能科普人工智能科普
1.生成式AI的定义:让AI从“识别”走向“创造”1.1什么是生成式AI生成式AI是一类能自主生成新内容(文本、图像、音频、视频等)的人工智能技术。与传统“判别式AI”(如人脸识别、垃圾邮件过滤,专注于分类和判断)不同,生成式AI的核心是“创造”——它能基于学习的规律,生成与训练数据相似但全新的内容。例如,判别式AI能判断“这是一幅梵高的画”,而生成式AI能模仿梵高的风格创作一幅全新的油画;判别式
- 计算机视觉:打开机器之眼看世界
LeafyJee_
人工智能人工智能深度学习计算机视觉
计算机视觉是人工智能领域中备受关注的一部分,它的目标是赋予计算机类似于人类眼睛的功能,让机器能够感知和理解周围的世界。通过图像和视频数据,计算机视觉技术将信息转化为可理解和可操作的数据,为各种应用领域提供了强大的支持。一、计算机视觉的起源和发展计算机视觉起源于20世纪50年代,当时科学家们开始研究如何让计算机能够识别和理解图像。随着技术的不断进步,计算机视觉逐渐发展成为一门独立的学科,并广泛应用于
- 如何使用 OpenCV 打开指定摄像头
在计算机视觉应用中,经常需要从特定的摄像头设备获取视频流。例如,在多摄像头环境中,当使用OpenCV的cv::VideoCapture类打开摄像头时,如果不指定摄像头的ID,可能会随机打开系统中的某个摄像头,或者按照设备连接的顺序打开第一个可用的摄像头。比如: //打开两个摄像头 cv::VideoCapture cap0(0); if (!cap0.isOpened()){ c
- MFC数字图像处理24位图转8位图 等四种图像色彩转换方式
CurtainSystem
数字图像处理数字图像处理图像色彩转换24位图转8位图
一、实验主要思路和基本操作本实验主要探究8位图和24位图的颜色转换。8位图具有调色板,调色板中有对应的256种不同的颜色,每种颜色所含的RGB值都不一样。24位图没有调色板,RGB三个颜色分量分别都有0-255可选择,属于真彩色图像。其中,两种不同位数的图形都有彩色图像和灰度图像两种,灰度图像中每个像素的颜色分量,R、G、值都一样。所以本实验核心分为两点:了解颜色的RGB组合和学会调色板的使用调色
- melody-canvas:实时音频可视化与创意画布
melody-canvas:实时音频可视化与创意画布项目介绍melody-canvas是一个开源项目,致力于为用户提供一个强大的音频可视化与画布编辑平台。通过该平台,用户可以利用Web技术实时地将音频信号转换成视觉元素,同时支持画布上的图像和文本编辑,创作出独一无二的音频艺术作品。项目技术分析melody-canvas的核心功能基于现代Web技术构建,主要包括以下技术组件:WebAudioAPI:
- Python 处理图像并生成 JSONL 元数据文件 - 固定text版本
Python处理图像并生成JSONL元数据文件-固定text版本flyfishJSONL(JSONLines)简介JSONL(JSONLines,也称为newline-delimitedJSON)是一种轻量级的数据序列化格式,由一系列独立的JSON对象组成,每行一个有效的JSON对象,行与行之间通过换行符(\n)分隔。JSONL是传统JSON的“轻量化”变体,通过“每行一个JSON对象”的设计,解
- 基于卷积神经网络与小波变换的医学图像超分辨率算法复现
神经网络15044
python算法cnn算法人工智能图像处理开发语言神经网络深度学习
基于卷积神经网络与小波变换的医学图像超分辨率算法复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言医学图像超分辨率技术在临床诊断和治疗规划中具有重要意义。高分辨率的医学图像能够提供更丰富的细节信息,帮助医生做出更准确的诊断。近年来,深度学习技术在图像超分辨率领域取得了显著进展。本文将复现一种结合卷积神经网络(CNN)、小波变
- 使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现
神经网络15044
算法python分类矩阵人工智能数据挖掘深度学习
使用MMDetection中的Mask2Former和X-Decoder训练自定义数据集及结果复现前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家,觉得好请收藏。点击跳转到网站。1.引言1.1研究背景实例分割是计算机视觉领域的重要任务,它要求模型不仅要检测图像中的对象,还要精确地分割出每个对象的像素级掩码。近年来,基于Transformer的模型在实例分割任务上取得
- OpenCV引擎:驱动实时应用开发的科技狂飙
芯作者
DD:计算机科学领域opencv计算机视觉
在人工智能与计算机视觉技术迅猛发展的今天,实时图像处理已成为工业自动化、自动驾驶、医疗诊断、增强现实等领域的核心技术需求。而**OpenCV(OpenSourceComputerVisionLibrary)**作为全球最活跃的开源计算机视觉库,正以其强大的算法生态、跨平台兼容性以及持续进化的架构设计,成为驱动实时应用开发的“数字引擎”。本文将深入剖析OpenCV如何通过技术创新突破实时处理的性能极
- 相机驱动:从按下快门到照片成型的全揭秘
你一身傲骨怎能输
Android操作系统数码相机
文章摘要本文用照相馆拍照的比喻形象展示了摄像机驱动的工作流程:用户(App)提出拍照请求,CameraService(前台)接收并转达给HAL层(摄影师),HAL配置参数后交由内核驱动(助手)操作硬件(相机)采集数据。数据经过驱动→HAL→Service→App逐层传回。整个流程分层协作,涵盖应用请求、框架调度、硬件抽象、驱动操作和硬件采集五个关键环节,生动诠释了从用户指令到图像获取的完整链路。一
- PHP如何实现二维数组排序?
IT独行者
二维数组PHP排序
二维数组在PHP开发中经常遇到,但是他的排序就不如一维数组那样用内置函数来的方便了,(一维数组排序可以参考本站另一篇文章【PHP中数组排序函数详解汇总】)。二维数组的排序需要我们自己写函数处理了,这里UncleToo给大家分享一个PHP二维数组排序的函数:
代码:
functionarray_sort($arr,$keys,$type='asc'){
$keysvalue= $new_arr
- 【Hadoop十七】HDFS HA配置
bit1129
hadoop
基于Zookeeper的HDFS HA配置主要涉及两个文件,core-site和hdfs-site.xml。
测试环境有三台
hadoop.master
hadoop.slave1
hadoop.slave2
hadoop.master包含的组件NameNode, JournalNode, Zookeeper,DFSZKFailoverController
- 由wsdl生成的java vo类不适合做普通java vo
darrenzhu
VOwsdlwebservicerpc
开发java webservice项目时,如果我们通过SOAP协议来输入输出,我们会利用工具从wsdl文件生成webservice的client端类,但是这里面生成的java data model类却不适合做为项目中的普通java vo类来使用,当然有一中情况例外,如果这个自动生成的类里面的properties都是基本数据类型,就没问题,但是如果有集合类,就不行。原因如下:
1)使用了集合如Li
- JAVA海量数据处理之二(BitMap)
周凡杨
java算法bitmapbitset数据
路漫漫其修远兮,吾将上下而求索。想要更快,就要深入挖掘 JAVA 基础的数据结构,从来分析出所编写的 JAVA 代码为什么把内存耗尽,思考有什么办法可以节省内存呢? 啊哈!算法。这里采用了 BitMap 思想。
首先来看一个实验:
指定 VM 参数大小: -Xms256m -Xmx540m
- java类型与数据库类型
g21121
java
很多时候我们用hibernate的时候往往并不是十分关心数据库类型和java类型的对应关心,因为大多数hbm文件是自动生成的,但有些时候诸如:数据库设计、没有生成工具、使用原始JDBC、使用mybatis(ibatIS)等等情况,就会手动的去对应数据库与java的数据类型关心,当然比较简单的数据类型即使配置错了也会很快发现问题,但有些数据类型却并不是十分常见,这就给程序员带来了很多麻烦。
&nb
- Linux命令
510888780
linux命令
系统信息
arch 显示机器的处理器架构(1)
uname -m 显示机器的处理器架构(2)
uname -r 显示正在使用的内核版本
dmidecode -q 显示硬件系统部件 - (SMBIOS / DMI)
hdparm -i /dev/hda 罗列一个磁盘的架构特性
hdparm -tT /dev/sda 在磁盘上执行测试性读取操作
cat /proc/cpuinfo 显示C
- java常用JVM参数
墙头上一根草
javajvm参数
-Xms:初始堆大小,默认为物理内存的1/64(<1GB);默认(MinHeapFreeRatio参数可以调整)空余堆内存小于40%时,JVM就会增大堆直到-Xmx的最大限制
-Xmx:最大堆大小,默认(MaxHeapFreeRatio参数可以调整)空余堆内存大于70%时,JVM会减少堆直到 -Xms的最小限制
-Xmn:新生代的内存空间大小,注意:此处的大小是(eden+ 2
- 我的spring学习笔记9-Spring使用工厂方法实例化Bean的注意点
aijuans
Spring 3
方法一:
<bean id="musicBox" class="onlyfun.caterpillar.factory.MusicBoxFactory"
factory-method="createMusicBoxStatic"></bean>
方法二:
- mysql查询性能优化之二
annan211
UNIONmysql查询优化索引优化
1 union的限制
有时mysql无法将限制条件从外层下推到内层,这使得原本能够限制部分返回结果的条件无法应用到内层
查询的优化上。
如果希望union的各个子句能够根据limit只取部分结果集,或者希望能够先排好序在
合并结果集的话,就需要在union的各个子句中分别使用这些子句。
例如 想将两个子查询结果联合起来,然后再取前20条记录,那么mys
- 数据的备份与恢复
百合不是茶
oraclesql数据恢复数据备份
数据的备份与恢复的方式有: 表,方案 ,数据库;
数据的备份:
导出到的常见命令;
参数 说明
USERID 确定执行导出实用程序的用户名和口令
BUFFER 确定导出数据时所使用的缓冲区大小,其大小用字节表示
FILE 指定导出的二进制文
- 线程组
bijian1013
java多线程threadjava多线程线程组
有些程序包含了相当数量的线程。这时,如果按照线程的功能将他们分成不同的类别将很有用。
线程组可以用来同时对一组线程进行操作。
创建线程组:ThreadGroup g = new ThreadGroup(groupName);
&nbs
- top命令找到占用CPU最高的java线程
bijian1013
javalinuxtop
上次分析系统中占用CPU高的问题,得到一些使用Java自身调试工具的经验,与大家分享。 (1)使用top命令找出占用cpu最高的JAVA进程PID:28174 (2)如下命令找出占用cpu最高的线程
top -Hp 28174 -d 1 -n 1
32694 root 20 0 3249m 2.0g 11m S 2 6.4 3:31.12 java
- 【持久化框架MyBatis3四】MyBatis3一对一关联查询
bit1129
Mybatis3
当两个实体具有1对1的对应关系时,可以使用One-To-One的进行映射关联查询
One-To-One示例数据
以学生表Student和地址信息表为例,每个学生都有都有1个唯一的地址(现实中,这种对应关系是不合适的,因为人和地址是多对一的关系),这里只是演示目的
学生表
CREATE TABLE STUDENTS
(
- C/C++图片或文件的读写
bitcarter
写图片
先看代码:
/*strTmpResult是文件或图片字符串
* filePath文件需要写入的地址或路径
*/
int writeFile(std::string &strTmpResult,std::string &filePath)
{
int i,len = strTmpResult.length();
unsigned cha
- nginx自定义指定加载配置
ronin47
进入 /usr/local/nginx/conf/include 目录,创建 nginx.node.conf 文件,在里面输入如下代码:
upstream nodejs {
server 127.0.0.1:3000;
#server 127.0.0.1:3001;
keepalive 64;
}
server {
liste
- java-71-数值的整数次方.实现函数double Power(double base, int exponent),求base的exponent次方
bylijinnan
double
public class Power {
/**
*Q71-数值的整数次方
*实现函数double Power(double base, int exponent),求base的exponent次方。不需要考虑溢出。
*/
private static boolean InvalidInput=false;
public static void main(
- Android四大组件的理解
Cb123456
android四大组件的理解
分享一下,今天在Android开发文档-开发者指南中看到的:
App components are the essential building blocks of an Android
- [宇宙与计算]涡旋场计算与拓扑分析
comsci
计算
怎么阐述我这个理论呢? 。。。。。。。。。
首先: 宇宙是一个非线性的拓扑结构与涡旋轨道时空的统一体。。。。
我们要在宇宙中寻找到一个适合人类居住的行星,时间非常重要,早一个刻度和晚一个刻度,这颗行星的
- 同一个Tomcat不同Web应用之间共享会话Session
cwqcwqmax9
session
实现两个WEB之间通过session 共享数据
查看tomcat 关于 HTTP Connector 中有个emptySessionPath 其解释如下:
If set to true, all paths for session cookies will be set to /. This can be useful for portlet specification impleme
- springmvc Spring3 MVC,ajax,乱码
dashuaifu
springjquerymvcAjax
springmvc Spring3 MVC @ResponseBody返回,jquery ajax调用中文乱码问题解决
Spring3.0 MVC @ResponseBody 的作用是把返回值直接写到HTTP response body里。具体实现AnnotationMethodHandlerAdapter类handleResponseBody方法,具体实
- 搭建WAMP环境
dcj3sjt126com
wamp
这里先解释一下WAMP是什么意思。W:windows,A:Apache,M:MYSQL,P:PHP。也就是说本文说明的是在windows系统下搭建以apache做服务器、MYSQL为数据库的PHP开发环境。
工欲善其事,必须先利其器。因为笔者的系统是WinXP,所以下文指的系统均为此系统。笔者所使用的Apache版本为apache_2.2.11-
- yii2 使用raw http request
dcj3sjt126com
http
Parses a raw HTTP request using yii\helpers\Json::decode()
To enable parsing for JSON requests you can configure yii\web\Request::$parsers using this class:
'request' =&g
- Quartz-1.8.6 理论部分
eksliang
quartz
转载请出自出处:http://eksliang.iteye.com/blog/2207691 一.概述
基于Quartz-1.8.6进行学习,因为Quartz2.0以后的API发生的非常大的变化,统一采用了build模式进行构建;
什么是quartz?
答:简单的说他是一个开源的java作业调度框架,为在 Java 应用程序中进行作业调度提供了简单却强大的机制。并且还能和Sp
- 什么是POJO?
gupeng_ie
javaPOJO框架Hibernate
POJO--Plain Old Java Objects(简单的java对象)
POJO是一个简单的、正规Java对象,它不包含业务逻辑处理或持久化逻辑等,也不是JavaBean、EntityBean等,不具有任何特殊角色和不继承或不实现任何其它Java框架的类或接口。
POJO对象有时也被称为Data对象,大量应用于表现现实中的对象。如果项目中使用了Hiber
- jQuery网站顶部定时折叠广告
ini
JavaScripthtmljqueryWebcss
效果体验:http://hovertree.com/texiao/jquery/4.htmHTML文件代码:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>网页顶部定时收起广告jQuery特效 - HoverTree<
- Spring boot内嵌的tomcat启动失败
kane_xie
spring boot
根据这篇guide创建了一个简单的spring boot应用,能运行且成功的访问。但移植到现有项目(基于hbase)中的时候,却报出以下错误:
SEVERE: A child container failed during start
java.util.concurrent.ExecutionException: org.apache.catalina.Lif
- leetcode: sort list
michelle_0916
Algorithmlinked listsort
Sort a linked list in O(n log n) time using constant space complexity.
====analysis=======
mergeSort for singly-linked list
====code======= /**
* Definition for sin
- nginx的安装与配置,中途遇到问题的解决
qifeifei
nginx
我使用的是ubuntu13.04系统,在安装nginx的时候遇到如下几个问题,然后找思路解决的,nginx 的下载与安装
wget http://nginx.org/download/nginx-1.0.11.tar.gz
tar zxvf nginx-1.0.11.tar.gz
./configure
make
make install
安装的时候出现
- 用枚举来处理java自定义异常
tcrct
javaenumexception
在系统开发过程中,总少不免要自己处理一些异常信息,然后将异常信息变成友好的提示返回到客户端的这样一个过程,之前都是new一个自定义的异常,当然这个所谓的自定义异常也是继承RuntimeException的,但这样往往会造成异常信息说明不一致的情况,所以就想到了用枚举来解决的办法。
1,先创建一个接口,里面有两个方法,一个是getCode, 一个是getMessage
public
- erlang supervisor分析
wudixiaotie
erlang
当我们给supervisor指定需要创建的子进程的时候,会指定M,F,A,如果是simple_one_for_one的策略的话,启动子进程的方式是supervisor:start_child(SupName, OtherArgs),这种方式可以根据调用者的需求传不同的参数给需要启动的子进程的方法。和最初的参数合并成一个数组,A ++ OtherArgs。那么这个时候就有个问题了,既然参数不一致,那