2022/6/22 雾切凉宫
继续使用上一次的UNet网络为例,使用UNet网络完成Carvana数据集的车辆分割。
Carvana数据集地址:Carvana Image Masking Challenge | Kaggle
首先还是先导入包:
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
import torch.optim as optim
import matplotlib.pyplot as plt
import PIL
from sklearn.model_selection import train_test_split
import os
import numpy as np
import collections
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
读取数据集:
下载了前面kaggle官网上的train.zip和train_masks.zip并读取数据集,划分检验训练集。
class CarvanaDataset (Dataset) :
def __init__(self, base_dir, idx_list, mode= "train", transform=None):
self.base_dir = base_dir
self.idx_list = idx_list
self.images = os. listdir(base_dir+"train")
self.masks = os.listdir(base_dir+"train_masks")
self.mode = mode
self.transform=transform
def __len__ (self):
return len(self.idx_list)
def __getitem__ (self, index):
image_file = self. images[self.idx_list[ index] ]
mask_file = image_file[ :-4]+"_mask.gif"
image = PIL.Image.open(os.path.join(base_dir, "train", image_file))
if self.mode == "train" :
mask = PIL.Image.open(os.path.join(base_dir, "train_masks", mask_file))
if self. transform is not None:
image = self.transform(image)
mask = self.transform(mask)
mask[mask!=0] = 1.0
return image, mask.float( )
else:
if self.transform is not None:
image = self.transform(image)
return image
base_dir ="./"
transform = transforms.Compose( [ transforms.Resize( (256,256)), transforms. ToTensor() ])
train_idxs,val_idxs = train_test_split(range(len(os.listdir(base_dir+"train_masks"))), test_size=0.3)
train_data = CarvanaDataset(base_dir, train_idxs, transform=transform)
val_data = CarvanaDataset(base_dir, val_idxs, transform= transform)
train_loader = DataLoader(train_data, batch_size=6, shuffle=True)
val_loader = DataLoader(train_data, batch_size=6, shuffle=True)
数据集读取好了,输出几个示例图片看一下
image,mask = next(iter(train_loader))
plt.subplot(121)
plt.imshow(image[0,0])
plt.subplot(122)
plt.imshow(mask[0,0],cmap="gray")
定义交叉熵损失函数
定义优化器,规定学习率
实例化模型至显存
criterion = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(unet.parameters(), lr=1e-3, weight_decay=1e-8)
unet = nn.DataParallel(unet).cuda()
dice系数,是图像分割任务使用的一种损失函数
定义训练函数
定义评估函数
def dice_coeff(pred, target) :
eps=0.0001
num = pred.size(0)
m1 = pred.view(num, -1)
m2 = target.view(num, -1)
intersection = (m1 * m2).sum( )
return (2.*intersection + eps) / (m1.sum() + m2.sum() + eps )
def train(epoch) :
unet.train( )
train_1oss = 0
for data, mask in train_loader:
data, mask = data.cuda(), mask.cuda( )
optimizer.zero_grad( )
output = unet(data)
loss = criterion (output ,mask)
loss.backward( )
optimizer.step( )
train_1oss += loss.item()*data.size(0)
train_loss = train_1oss/len(train_loader.dataset)
print( 'Epoch:{} \tTraining Loss: {: .6f}' . format(epoch, train_loss))
def val(epoch):
print( "current learning rate:" , optimizer.state_dict()["param_groups"][0]["lr"])
unet.eval()
val_loss=0
dice_score = 0
with torch.no_grad():
for data, mask in val_loader:
data, mask = data.cuda(), mask.cuda( )
output = unet(data)
loss = criterion (output, mask)
val_loss += loss.item( ) *data.size(0)
dice_score += dice_coeff(torch.sigmoid(output).cpu(), mask.cpu() )*data.size(0)
val_loss = val_loss/len(val_loader.dataset)
dice_score = dice_score/len(val_loader.dataset)
print( 'Epoch: {} \t Validation Loss: {:.6f}, Dice score: {: .6f}' .format(epoch, val_loss, dice_score))
开始训练
epochs=100
for epoch in range(1,epochs+1):
if hasattr(torch.cuda, 'empty_cache'):
torch.cuda.empty_cache()
train(epoch)
val(epoch)
下面这条命令可以用于查看gpu占用情况
!nvidia-smi
Wed Jun 22 20:11:54 2022
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 512.77 Driver Version: 512.77 CUDA Version: 11.6 |
|-------------------------------+----------------------+----------------------+
| GPU Name TCC/WDDM | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... WDDM | 00000000:01:00.0 On | N/A |
| N/A 55C P3 23W / N/A | 242MiB / 6144MiB | 3% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 3860 C+G ...txyewy\MiniSearchHost.exe N/A |
| 0 N/A N/A 5688 C+G ...artMenuExperienceHost.exe N/A |
| 0 N/A N/A 7464 C+G ...d\runtime\WeChatAppEx.exe N/A |
| 0 N/A N/A 8448 C+G ...tracted\WechatBrowser.exe N/A |
| 0 N/A N/A 16996 C+G ...cw5n1h2txyewy\LockApp.exe N/A |
| 0 N/A N/A 19540 C+G ...erver\YourPhoneServer.exe N/A |
| 0 N/A N/A 19660 C+G ...2txyewy\TextInputHost.exe N/A |
| 0 N/A N/A 21580 C+G ...n1h2txyewy\SearchHost.exe N/A |
| 0 N/A N/A 26356 C ...vs\pytorch_enc\python.exe N/A |
+-----------------------------------------------------------------------------+
如果我们不想使用交叉熵函数,而是想针对分割模型常用的Dice系数设计专门的loss,即DiceLoss, 这时就需要我们自定义PyTorch的损失函数。
推荐还是使用类的方法来书写。不过不同于模型定义,并不需要初始化很多属性,只要重写forward函数即可
class DiceLoss(nn. Module) :
def __init__ (self, weight=None, size_average=True) :
super(DiceLoss, self).__init__ ()
def forward(self, inputs, targets, smooth=1):
inputs = torch.sigmoid( inputs)
inputs = inputs.view(-1)
targets = targets.view(-1 )
intersection = (inputs * targets).sum( )
dice = (2.*intersection + smooth)/(inputs.sum() + targets.sum() + smooth)
return 1-dice
在评估集中取一张照片并使用新定义的损失函数进行评估
newcriterion = DiceLoss()
unet.eval()
image, mask = next(iter(val_loader))
out_unet = unet(image.cuda())
loss = newcriterion(out_unet, mask.cuda())
print(loss)
tensor(0.6993, device='cuda:0', grad_fn=)
随着优化的进行,固定的学习率可能无法满足优化的需求,这时需要调整学习率,降低优化的速度
这里演示使用PyTorch自带的StepLR scheduler动态调整学习率的效果,文字版教程中给出了自定义scheduler的方式
其中step_size为调整学习率的频率,gamma为每次调整的倍率
scheduler = optim.lr_scheduler.StepLR(optimizer,step_size=1, gamma=0.8)
epochs =100
for epoch in range(1,epochs+1):
train(epoch)
val(epoch)
scheduler.step()
设置unet最后输出层的conv不进行参数梯度更新
unet.module.outc.conv.weight.requires_grad = False
for layer, param in unet.named_parameters():
print(layer,"\t",param.requires_grad)
可以把原来32位浮点数压缩成16位浮点数。可以让显存压力小很多QAQ
from torch.cuda.amp import autocast
对模型的修改只需要在forward函数前添加**@autocast()修饰器**即可
class UNet_half(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=True):
super(UNet_half, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
factor = 2 if bilinear else 1
self.down4 = Down(512, 1024 // factor)
self.up1 = Up(1024, 512 // factor, bilinear)
self.up2 = Up(512, 256 // factor, bilinear)
self.up3 = Up(256, 128 // factor, bilinear)
self.up4 = Up(128, 64, bilinear)
self.outc = OutConv(64, n_classes)
@autocast()
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits
unet_half = UNet_half(3,1)
unet_half = nn.DataParallel(unet_half).cuda()
对训练函数与评估函数的修改在for循环中加入with autocast():
def dice_coeff(pred, target) :
eps=0.0001
num = pred.size(0)
m1 = pred.view(num, -1)
m2 = target.view(num, -1)
intersection = (m1 * m2).sum( )
return (2.*intersection + eps) / (m1.sum() + m2.sum() + eps )
def train_half(epoch) :
unet.train( )
train_1oss = 0
for data, mask in train_loader:
data, mask = data.cuda(), mask.cuda( )
with autocast(): #修改了这里
optimizer.zero_grad( )
output = unet(data)
loss = criterion (output ,mask)
loss.backward( )
optimizer.step( )
train_1oss += loss.item()*data.size(0)
train_loss = train_1oss/len(train_loader.dataset)
print( 'Epoch:{} \tTraining Loss: {: .6f}' . format(epoch, train_loss))
def val_half(epoch):
print( "current learning rate:" , optimizer.state_dict()["param_groups"][0]["lr"])
unet.eval()
val_loss=0
dice_score = 0
with torch.no_grad():
for data, mask in val_loader:
data, mask = data.cuda(), mask.cuda( )
with autocast(): #修改了这里
output = unet(data)
loss = criterion (output, mask)
val_loss += loss.item( ) *data.size(0)
dice_score += dice_coeff(torch.sigmoid(output).cpu(), mask.cpu() )*data.size(0)
val_loss = val_loss/len(val_loader.dataset)
dice_score = dice_score/len(val_loader.dataset)
print( 'Epoch: {} \t Validation Loss: {:.6f}, Dice score: {: .6f}' .format(epoch, val_loss, dice_score))