python高级在线题目训练-第一套-主观题

1、(操作题)设计一个表示服务器的类。包含服务器的属性有:

CPU个数,
内存大小,
磁盘空间大小,
操作系统类型(Linux, Windows),其中操作系统类型设置为私有变量,外部不可以更改。
实现一个方法,输出服务器的属性内容为以下格式: 8核CPU, 40G内存, 150G磁盘空间,Linux。
 

class Server:
    def __init__(self, CPUCount, CaChe, Size):
        self.CPUCount = CPUCount
        self.CaChe = CaChe
        self.Size = Size
        self.__SystemInfo = "Linux"

    def OutInfo(self):
        print("{0}核CPU,{1}G内存,{2}G磁盘空间,{3}".format(self.CPUCount, self.CaChe, self.Size, self.__SystemInfo))


ser = Server(8, 40, 150)
ser.OutInfo()

2、(操作题)请编写Python代码实现下列要求。

首先生成100个二维坐标点,然后计算任意两点之间的距离,最后把结果存储到一个矩阵中,实现求解点和点之间的距。
 

import numpy as np

x = np.linspace(0, 10, 100)
y = np.linspace(10, 20, 100)
np.arange(100)
arr1 = []
for i in np.arange(100):
    for j in np.arange(100):
        a = np.sqrt((x[i] - x[j]) ** 2 + (y[i] - y[j]) ** 2)
        arr1.append(a)
# 矩阵库
arr1 = np.matrix(arr1)
arr1.reshape(100, 100)

3、(简述题)请简述神经网络的优点和缺点(每类不少于3点)

优点:

(1)具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。

自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。

(2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。

(3)具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

缺点:

(1)最严重的问题是没能力来解释自己的推理过程和推理依据。

(2)不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。

(3)把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。

(4)理论和学习算法还有待于进一步完善和提高。


 


理论:

class classname[(父类名)]:

– 成员函数及成员变量

_ init _ 构造函数:初始化对象

_ del_ 析构函数:销毁对象

定义类的成员函数时,必须默认一个变量代表类定义的对象本身,这个变量的名称可自行定义,下面的程序使用self变量表示类对象的变量。

#类(Class): 用来描述具有相同的属性和方法的对象的集合。它定义了该集合中每个对象所共有的属性和方法。

#对象:它是类的实例化。

#方法:类中定义的函数。

#类(Class) 由3个部分构成:

'''

类的名称:类名

类的属性:指对象的特征(一组数据)

类的方法:允许对象进行操作的方法 (行为/功能)

'''

# Python 3.x中取消了经典类,默认都是新式类。

# 新式类的语法 -> class 类名(object): pass

# 类对象支持两种操作:属性引用 和 实例化。

# 属性引用的语法:obj.属性

# 类实例化的语法:obj = 类名()

# 类中方法的调用:obj.方法名()

你可能感兴趣的:(Python应用技术-案例源码,python,开发语言)