手写实现李航《统计学习方法》书中全部算法

点击上方,选择星标置顶,每天给你送干货

阅读大概需要3分钟

跟随小博主,每天进步一丢丢

作者:Dodo

编辑:深度学习自然语言处理公众号

github:https://github.com/Dod-o/Statistical-Learning-Method_Code

手写实现李航《统计学习方法》书中全部算法_第1张图片

手写实现李航《统计学习方法》书中全部算法_第2张图片

前言

力求每行代码都有注释,重要部分注明公式来源。具体会追求下方这样的代码,学习者可以照着公式看程序,让代码有据可查。

如果时间充沛的话,可能会试着给每一章写一篇博客。先放个博客链接吧:传送门:http://www.pkudodo.com/。

注:其中Mnist数据集已转换为csv格式,由于体积为107M超过限制,改为压缩包形式。下载后务必先将Mnist文件内压缩包直接解压。

实现

第二章 感知机:

博客:统计学习方法|感知机原理剖析及实现
实现:perceptron/perceptron_dichotomy.py

第三章 K近邻:

博客:统计学习方法|K近邻原理剖析及实现
实现:KNN/KNN.py

第四章 朴素贝叶斯:

博客:统计学习方法|朴素贝叶斯原理剖析及实现
实现:NaiveBayes/NaiveBayes.py

第五章 决策树:

博客:统计学习方法|决策树原理剖析及实现
实现:DecisionTree/DecisionTree.py

第六章 逻辑斯蒂回归与最大熵模型:

博客:逻辑斯蒂回归:统计学习方法|逻辑斯蒂原理剖析及实现
博客:最大熵:统计学习方法|最大熵原理剖析及实现

实现:逻辑斯蒂回归:Logistic_and_maximum_entropy_models/logisticRegression.py
实现:最大熵:Logistic_and_maximum_entropy_models/maxEntropy.py

第七章 支持向量机:

博客:统计学习方法|支持向量机(SVM)原理剖析及实现
实现:SVM/SVM.py

第八章 提升方法:

实现:AdaBoost/AdaBoost.py

第九章 EM算法及其推广:

实现:EM/EM.py

第十章 隐马尔可夫模型:

实现:HMM/HMM.py


添加个人微信,备注:昵称-学校(公司)-方向,即可获得

1. 快速学习深度学习五件套资料

2. 进入高手如云DL&NLP交流群

记得备注呦

你可能感兴趣的:(手写实现李航《统计学习方法》书中全部算法)