报错解决:plt.colormaps[‘RdYlGn‘](np.linspace(0.15, 0.85, data.shape[1]))

今天在matplotlib官网下载了一段画图代码,发现跑不通。具体报错如下图所示:

报错解决:plt.colormaps[‘RdYlGn‘](np.linspace(0.15, 0.85, data.shape[1]))_第1张图片

根据错误提示,发现是下面这行代码的使用出现了问题,这里混淆了colormap和get_cmap:

category_colors = plt.colormaps['RdYlGn'](np.linspace(0.15, 0.85, data.shape[1]))

 改成下面这个样子就没问题了。

category_colors = plt.get_cmap('RdYlGn')(np.linspace(0.15, 0.85, data.shape[1]))

'RdYlGn'是matplotlib中的色条,get_cmap函数是要在这个色条上取出颜色,类似于自定义colorbar了。最终成图如下,

报错解决:plt.colormaps[‘RdYlGn‘](np.linspace(0.15, 0.85, data.shape[1]))_第2张图片

 完整代码如下:

"""
=============================================
Discrete distribution as horizontal bar chart
=============================================

Stacked bar charts can be used to visualize discrete distributions.

This example visualizes the result of a survey in which people could rate
their agreement to questions on a five-element scale.

The horizontal stacking is achieved by calling `~.Axes.barh()` for each
category and passing the starting point as the cumulative sum of the
already drawn bars via the parameter ``left``.
"""

import numpy as np
import matplotlib.pyplot as plt


category_names = ['Strongly disagree', 'Disagree',
                  'Neither agree nor disagree', 'Agree', 'Strongly agree']
results = {
    'Question 1': [10, 15, 17, 32, 26],
    'Question 2': [26, 22, 29, 10, 13],
    'Question 3': [35, 37, 7, 2, 19],
    'Question 4': [32, 11, 9, 15, 33],
    'Question 5': [21, 29, 5, 5, 40],
    'Question 6': [8, 19, 5, 30, 38]
}


def survey(results, category_names):
    """
    Parameters
    ----------
    results : dict
        A mapping from question labels to a list of answers per category.
        It is assumed all lists contain the same number of entries and that
        it matches the length of *category_names*.
    category_names : list of str
        The category labels.
    """
    labels = list(results.keys())
    data = np.array(list(results.values()))
    data_cum = data.cumsum(axis=1)
    category_colors = plt.get_cmap('RdYlGn')(np.linspace(0.15, 0.85, data.shape[1]))

    fig, ax = plt.subplots(figsize=(9.2, 5))
    ax.invert_yaxis()
    ax.xaxis.set_visible(False)
    ax.set_xlim(0, np.sum(data, axis=1).max())

    for i, (colname, color) in enumerate(zip(category_names, category_colors)):
        widths = data[:, i]
        starts = data_cum[:, i] - widths
        rects = ax.barh(labels, widths, left=starts, height=0.5,
                        label=colname, color=color)

        r, g, b, _ = color
        text_color = 'white' if r * g * b < 0.5 else 'darkgrey'
        ax.bar_label(rects, label_type='center', color=text_color)
    ax.legend(ncol=len(category_names), bbox_to_anchor=(0, 1),
              loc='lower left', fontsize='small')

    return fig, ax


survey(results, category_names)
plt.show()

#############################################################################
#
# .. admonition:: References
#
#    The use of the following functions, methods, classes and modules is shown
#    in this example:
#
#    - `matplotlib.axes.Axes.barh` / `matplotlib.pyplot.barh`
#    - `matplotlib.axes.Axes.bar_label` / `matplotlib.pyplot.bar_label`
#    - `matplotlib.axes.Axes.legend` / `matplotlib.pyplot.legend`

你可能感兴趣的:(python)