飞桨深度学习零基础入门(序)——Python实现梯度下降
import paddle
from paddle.nn import Linear
import paddle.nn.functional as F
import numpy as np
import os
import random
其中:
Linear全连接层,在本文中仅采用一个全连接层即单个神经网络对波士顿房价进行预测
class Regressor(paddle.nn.Layer):
def __init__(self):
super(Regressor, self).__init__()
self.fc = Linear(in_features=13, out_features=1)
def forward(self, inputs):
x = self.fc(inputs)
return x
输入的特征是13个,对于结果仅输出对房价的预测
model = Regressor()
model.train()
opt = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters())
将单层神经网络回归类实例化之后开启模型训练模式(model.train),设置优化器为随机梯度下降(SGD),并设置学习率为0.01,梯度下载的参数设置为模型所需的参数
由于个人很好奇数据集导入的格式,所以采用了keras.datasets来导入了数据集,常规的导入情况请参照上一篇文章
from keras.datasets import boston_housing
(training_data, train_targets), (test_data, test_targets) = boston_housing.load_data()
train_targets = train_targets.reshape((-1, 1))
training_data = np.array(np.concatenate([training_data, train_targets], axis=1).astype(np.double))
test_targets = test_targets.reshape((-1, 1))
test_data = np.array(np.concatenate([test_data, test_targets], axis=1).astype(np.double))
maxinums, mininums, avg = training_data.max(axis=0), training_data.min(axis=0), training_data.sum(axis=0) / training_data.shape[0]
training_data, test_data = (training_data - mininums) / (maxinums - mininums), (test_data - mininums) / (maxinums - mininums)
EPOCH_NUM = 100 # 设置外层循环次数
BATCH_SIZE = 10 # 设置batch大小
for epoch_id in range(EPOCH_NUM):
# 在每轮迭代开始之前,将训练数据的顺序随机的打乱
# 将训练数据进行拆分,每个batch包含10条数据
np.random.shuffle(training_data)
mini_batches = [training_data[k:k+BATCH_SIZE] for k in range(0, len(training_data), BATCH_SIZE)]
# 定义内层循环
for iter_id, mini_batch in enumerate(mini_batches):
x = np.array(mini_batch[:, :-1]) # 获得当前批次训练数据
y = np.array(mini_batch[:, -1:]) # 获得当前批次训练标签(真实房价)
# 将numpy数据转为飞桨动态图tensor形式
house_features = paddle.to_tensor(x)
house_features = paddle.cast(house_features, dtype="float32")
prices = paddle.to_tensor(y)
prices = paddle.cast(prices, dtype="float32")
# 前向计算
predicts = model(house_features)
# 计算损失
loss = F.square_error_cost(predicts, label=prices)
avg_loss = paddle.mean(loss)
if iter_id % 20==0:
print("epoch: {}, iter: {}, loss is: {}".format(epoch_id, iter_id, avg_loss.numpy()))
# 反向传播
avg_loss.backward()
# 最小化loss,更新参数
opt.step()
# 清除梯度
opt.clear_grad()
paddle.save(model.state_dict(), 'LR_model.pdparams')
print("模型保存成功,模型参数保存在LR_model.pdparams中")
def load_one_example():
# 从上边已加载的测试集中,随机选择一条作为测试数据
idx = np.random.randint(0, test_data.shape[0])
idx = -10
one_data, label = test_data[idx, :-1], test_data[idx, -1]
# 修改该条数据shape为[1,13]
one_data = one_data.reshape([1,-1])
return one_data, label
model_dict = paddle.load('LR_model.pdparams')
model.load_dict(model_dict)
model.eval()
# 参数为数据集的文件地址
one_data, label = load_one_example()
# 将数据转为动态图的variable格式
one_data = paddle.to_tensor(one_data)
one_data = paddle.cast(one_data, dtype='float32')
predict = model(one_data)
# 对结果做反归一化处理
predict = predict * (maxinums[-1] - mininums[-1]) + avg[-1]
# 对label数据做反归一化处理
label = label * (maxinums[-1] - mininums[-1]) + avg[-1]
print("Inference result is {}, the corresponding label is {}".format(predict.numpy(), label))
运行结果:
由于初始化和模型训练轮次的缘故,结果可能不会相同,但最后预测结果和最终标签应该不会差太多
代码链接
keras版本的全连接层实现可以参照博主另一个系列的文章:
睿智的keras深度学习(一)——阈值逻辑单元和多层感知机