PyTorch Geometric(PyG)+Cuda+Pytorch安装与使用

问题

主要是各个版本之间的对应问题,这里以cuda11.3,Pytorch11.2进行说明

安装Cuda

地址:https://developer.nvidia.com/cuda-toolkit-archive
选择11.3.0下载安装。
PyTorch Geometric(PyG)+Cuda+Pytorch安装与使用_第1张图片

安装python 3.7

conda install python=3.7

安装Pytorch

网址:https://pytorch.org/get-started/locally/
PyTorch Geometric(PyG)+Cuda+Pytorch安装与使用_第2张图片
一定要选11.3

conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch

安装PyTorch Geometric(PyG)

确保以上都没问题后。
进入网址:
https://pytorch-geometric.readthedocs.io/en/latest/notes/installation.html
PyTorch Geometric(PyG)+Cuda+Pytorch安装与使用_第3张图片
运行:

conda install pyg -c pyg

一定保证版本号的对应。

测试PyG

import os.path as osp

import torch
import torch.nn.functional as F
from torch.nn import Sequential as Seq, Linear as Lin, ReLU
from torch_geometric.datasets import TUDataset
from torch_geometric.data import DataLoader
from torch_geometric.nn import GINConv, TopKPooling
from torch_geometric.nn import global_add_pool
from torch_scatter import scatter_mean


class HandleNodeAttention(object):
    def __call__(self, data):
        data.attn = torch.softmax(data.x[:, 0], dim=0)
        data.x = data.x[:, 1:]
        return data


path = osp.join(osp.dirname(osp.realpath(__file__)), '..', 'data', 'COLORS-3')
dataset = TUDataset(path, 'COLORS-3', use_node_attr=True,
                    transform=HandleNodeAttention())

train_loader = DataLoader(dataset[:500], batch_size=60, shuffle=True)
val_loader = DataLoader(dataset[500:3000], batch_size=60)
test_loader = DataLoader(dataset[3000:], batch_size=60)


class Net(torch.nn.Module):
    def __init__(self, in_channels):
        super(Net, self).__init__()

        self.conv1 = GINConv(Seq(Lin(in_channels, 64), ReLU(), Lin(64, 64)))
        self.pool1 = TopKPooling(in_channels, min_score=0.05)
        self.conv2 = GINConv(Seq(Lin(64, 64), ReLU(), Lin(64, 64)))

        self.lin = torch.nn.Linear(64, 1)

    def forward(self, data):
        x, edge_index, batch = data.x, data.edge_index, data.batch

        out = F.relu(self.conv1(x, edge_index))

        out, edge_index, _, batch, perm, score = self.pool1(
            out, edge_index, None, batch, attn=x)
        ratio = out.size(0) / x.size(0)

        out = F.relu(self.conv2(out, edge_index))
        out = global_add_pool(out, batch)
        out = self.lin(out).view(-1)

        attn_loss = F.kl_div(torch.log(score + 1e-14), data.attn[perm],
                             reduction='none')
        attn_loss = scatter_mean(attn_loss, batch)

        return out, attn_loss, ratio


device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = Net(dataset.num_features).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)

# Initialize to optimal attention weights:
# model.pool1.weight.data = torch.tensor([0., 1., 0., 0.]).view(1,4).to(device)
def train(epoch):
    model.train()

    total_loss = 0
    for data in train_loader:
        data = data.to(device)
        optimizer.zero_grad()
        out, attn_loss, _ = model(data)
        loss = ((out - data.y).pow(2) + 100 * attn_loss).mean()
        loss.backward()
        total_loss += loss.item() * data.num_graphs
        optimizer.step()

    return total_loss / len(train_loader.dataset)
def test(loader):
    model.eval()

    corrects, total_ratio = [], 0
    for data in loader:
        data = data.to(device)
        out, _, ratio = model(data)
        pred = out.round().to(torch.long)
        corrects.append(pred.eq(data.y.to(torch.long)))
        total_ratio += ratio
    return torch.cat(corrects, dim=0), total_ratio / len(loader)
for epoch in range(1, 301):
    loss = train(epoch)
    train_correct, train_ratio = test(train_loader)
    val_correct, val_ratio = test(val_loader)
    test_correct, test_ratio = test(test_loader)

    train_acc = train_correct.sum().item() / train_correct.size(0)
    val_acc = val_correct.sum().item() / val_correct.size(0)

    test_acc1 = test_correct[:2500].sum().item() / 2500
    test_acc2 = test_correct[2500:5000].sum().item() / 2500
    test_acc3 = test_correct[5000:].sum().item() / 2500

    print(('Epoch: {:03d}, Loss: {:.4f}, Train: {:.3f}, Val: {:.3f}, '
           'Test Orig: {:.3f}, Test Large: {:.3f}, Test LargeC: {:.3f}, '
           'Train/Val/Test Ratio={:.3f}/{:.3f}/{:.3f}').format(
               epoch, loss, train_acc, val_acc, test_acc1, test_acc2,
               test_acc3, train_ratio, val_ratio, test_ratio))




你可能感兴趣的:(算法,python,工具使用,pytorch,深度学习,python)