一:朴素贝叶斯算法概述
1:朴素贝叶斯(Naïve Bayes, NB)算法,是一种基于贝叶斯定理与特征条件独立假设的分类方法。朴素:特征条件独立;贝叶斯:基于贝叶斯定理。属于监督学习的生成模型,实现简单,并有坚实的数学理论(即贝叶斯定理)作为支撑。
2:理解:贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类。而朴素朴素贝叶斯分类是贝叶斯分类中最简单,也是常见的一种分类方法。
3:那么既然是朴素贝叶斯分类算法,它的核心算法又是什么呢?
可以换一个表达形式更容易理解:
4:例子分析
这里我们联系到朴素贝叶斯公式:
由表中的数据计算可以得到:
对于类别“嫁”的贝叶斯分子为:
对于类别“不嫁”的贝叶斯分子为:
最终结果为:
不嫁(60%) > 嫁( 40%),则该女生选择不嫁。
5:朴素贝叶斯算法的优缺点
优点:
(1) 算法逻辑简单,易于实现
(2)分类过程中时空开销小
缺点:
理论上,朴素贝叶斯模型与其他分类方法相比具有最小的误差率。但是实际上并非总是如此,这是因为朴素贝叶斯模型假设属性之间相互独立,这个假设在实际应用中往往是不成立的,在属性个数比较多或者属性之间相关性较大时,分类效果不好。
而在属性相关性较小时,朴素贝叶斯性能最为良好。对于这一点,有半朴素贝叶斯之类的算法通过考虑部分关联性适度改进。
二:垃圾邮件(我们想采用的分类方法是通过多个词来判断是否为垃圾邮件,但这个概率难以估计,通过贝叶斯公式,可以转化为求垃圾邮件中这些词出现的概率。)
1:主要步骤:
分类标准:当 P(垃圾邮件|文字内容)> P(正常邮件|文字内容)时,我们认为该邮件为垃圾邮件,但是单凭单个词而做出判断误差肯定相当大,因此我们可以将所有的词一起进行联合判断。
2:代码实现
import os
import re
import string
import math
DATA_DIR = 'enron Email dataset/enron'
target_names = ['ham', 'spam']
def get_data(DATA_DIR):
subfolders = ['enron%d' % i for i in range(1, 7)]
data = []
target = []
for subfolder in subfolders:
# spam
spam_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'spam'))
for spam_file in spam_files:
with open(os.path.join(DATA_DIR, subfolder, 'spam', spam_file), encoding="latin-1") as f:
data.append(f.read())
target.append(1)
# ham
ham_files = os.listdir(os.path.join(DATA_DIR, subfolder, 'ham'))
for ham_file in ham_files:
with open(os.path.join(DATA_DIR, subfolder, 'ham', ham_file), encoding="latin-1") as f:
data.append(f.read())
target.append(0)
return data, target
X, y = get_data(DATA_DIR)
class SpamDetector_1(object):
"""Implementation of Naive Bayes for binary classification"""
# 清除空格
def clean(self, s):
translator = str.maketrans("", "", string.punctuation)
return s.translate(translator)
# 分开每个单词
def tokenize(self, text):
text = self.clean(text).lower()
return re.split("\W+", text)
# 计算某个单词出现的次数
def get_word_counts(self, words):
word_counts = {}
for word in words:
word_counts[word] = word_counts.get(word, 0.0) + 1.0
return word_counts
class SpamDetector_2(SpamDetector_1):
# X:data,Y:target标签(垃圾邮件或正常邮件)
def fit(self, X, Y):
self.num_messages = {}
self.log_class_priors = {}
self.word_counts = {}
# 建立一个集合存储所有出现的单词
self.vocab = set()
# 统计spam和ham邮件的个数
self.num_messages['spam'] = sum(1 for label in Y if label == 1)
self.num_messages['ham'] = sum(1 for label in Y if label == 0)
# 计算先验概率,即所有的邮件中,垃圾邮件和正常邮件所占的比例
self.log_class_priors['spam'] = math.log(
self.num_messages['spam'] / (self.num_messages['spam'] + self.num_messages['ham']))
self.log_class_priors['ham'] = math.log(
self.num_messages['ham'] / (self.num_messages['spam'] + self.num_messages['ham']))
self.word_counts['spam'] = {}
self.word_counts['ham'] = {}
for x, y in zip(X, Y):
c = 'spam' if y == 1 else 'ham'
# 构建一个字典存储单封邮件中的单词以及其个数
counts = self.get_word_counts(self.tokenize(x))
for word, count in counts.items():
if word not in self.vocab:
self.vocab.add(word) # 确保self.vocab中含有所有邮件中的单词
# 下面语句是为了计算垃圾邮件和非垃圾邮件的词频,即给定词在垃圾邮件和非垃圾邮件中出现的次数。
# c是0或1,垃圾邮件的标签
if word not in self.word_counts[c]:
self.word_counts[c][word] = 0.0
self.word_counts[c][word] += count
MNB = SpamDetector_2()
MNB.fit(X[100:], y[100:])
class SpamDetector(SpamDetector_2):
def predict(self, X):
result = []
flag_1 = 0
# 遍历所有的测试集
for x in X:
counts = self.get_word_counts(self.tokenize(x)) # 生成可以记录单词以及该单词出现的次数的字典
spam_score = 0
ham_score = 0
flag_2 = 0
for word, _ in counts.items():
if word not in self.vocab:
continue
# 下面计算P(内容|垃圾邮件)和P(内容|正常邮件),所有的单词都要进行拉普拉斯平滑
else:
# 该单词存在于正常邮件的训练集和垃圾邮件的训练集当中
if word in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
log_w_given_spam = math.log(
(self.word_counts['spam'][word] + 1) / (
sum(self.word_counts['spam'].values()) + len(self.vocab)))
log_w_given_ham = math.log(
(self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
self.vocab)))
# 该单词存在于垃圾邮件的训练集当中,但不存在于正常邮件的训练集当中
if word in self.word_counts['spam'].keys() and word not in self.word_counts['ham'].keys():
log_w_given_spam = math.log(
(self.word_counts['spam'][word] + 1) / (
sum(self.word_counts['spam'].values()) + len(self.vocab)))
log_w_given_ham = math.log(1 / (sum(self.word_counts['ham'].values()) + len(
self.vocab)))
# 该单词存在于正常邮件的训练集当中,但不存在于垃圾邮件的训练集当中
if word not in self.word_counts['spam'].keys() and word in self.word_counts['ham'].keys():
log_w_given_spam = math.log(1 / (sum(self.word_counts['spam'].values()) + len(self.vocab)))
log_w_given_ham = math.log(
(self.word_counts['ham'][word] + 1) / (sum(self.word_counts['ham'].values()) + len(
self.vocab)))
# 把计算到的P(内容|垃圾邮件)和P(内容|正常邮件)加起来
spam_score += log_w_given_spam
ham_score += log_w_given_ham
flag_2 += 1
# 最后,还要把先验加上去,即P(垃圾邮件)和P(正常邮件)
spam_score += self.log_class_priors['spam']
ham_score += self.log_class_priors['ham']
# 最后进行预测,如果spam_score > ham_score则标志为1,即垃圾邮件
if spam_score > ham_score:
result.append(1)
else:
result.append(0)
flag_1 += 1
return result
MNB = SpamDetector()
MNB.fit(X[100:], y[100:])
pred = MNB.predict(X[:100])
true = y[:100]
accuracy = 0
for i in range(100):
if pred[i] == true[i]:
accuracy += 1
print("测试的正确率为:"+accuracy)
3:结果展示(结果为:数据集中有训练集和测试集,所以当我们对训练结果进行测试时,可以发现测试结果很高为98%,所以可以实现大部分的垃圾邮件的检索。)