matlab的train函数用法,SVMtrain函数用法

1.最近结合ACO和SVM做分类,于是仔细看了下svmtrain的help文档。现结合该doc文档,做简单整理,希望对

svm入门者有点帮助哦。

svmtrain:用于训练支持向量机分类器。语法格式如下:

SVMStruct = svmtrain(Training, Group)

SVMStruct = svmtrain(..., 'Kernel_Function',

Kernel_FunctionValue, ...)

SVMStruct = svmtrain(..., 'RBF_Sigma',

RBFSigmaValue, ...)

SVMStruct = svmtrain(..., 'Polyorder',

PolyorderValue, ...)

SVMStruct = svmtrain(..., 'Mlp_Params',

Mlp_ParamsValue, ...)

SVMStruct = svmtrain(..., 'Method', MethodValue,

...)

SVMStruct = svmtrain(..., 'QuadProg_Opts',

QuadProg_OptsValue, ...)

SVMStruct = svmtrain(..., 'SMO_Opts',

SMO_OptsValue, ...)

SVMStruct = svmtrain(..., 'BoxConstraint',

BoxConstraintValue, ...)

SVMStruct = svmtrain(..., 'Autoscale',

AutoscaleValue, ...)

SVMStruct = svmtrain(..., 'Showplot',

ShowplotValue, ...)

解释如下:

Training是一个M行N列的矩阵,M是样本数,N是特征维数。Group:是个列向量,表示样本对应的类别,用字符串表示(可以用数字或单个字符)。

classifier is returned in SVMStruct, a structure with the

following fields. 'Kernel_Function',

Kernel_FunctionValue,.......'Showplot',

ShowplotValue这些在svmtrain中是可选项。他们在svmtrain中出现的顺序是无关紧要的。但必须成对出现,前面单引号里的是字符标记,后面给出的是对应的值。Kernel_FunctionValue

有如下些可选类别:

linear — Default. Linear kernel or dot product.

quadratic — Quadratic kernel.

rbf — Gaussian Radial Basis Function kernel with a default

scaling factor, sigma, of 1.

polynomial — Polynomial kernel with a default order of 3.

mlp — Multilayer Perceptron kernel with default scale and bias

parameters of [1, -1].

如可通过如下来设定核函数为Gaussian Radial Basis Function

kernel :

SVMStruct = svmtrain(Training, Group,

'Kernel_Function', rbf);

%%-------------------------分割线----------------------------------------------------------------------

2 svmtrain(

… );

%通过训练集来训练模型 svmpredict( …

);%对测试集进行预测 >>model

= svmtrain(train_label, train_matrix,

['libsvm_options']); -train_label: An m by 1 vector of training

labels (type must be

double).-train_matrix: An m by n matrix of m training

instances with n features. It can be dense or sparse

(type must be

double).-libsvm_options: A string of training options

in the same format as that of LIBSVM.===============The 'svmtrain'

function returns a model which can be used for

futureprediction. >>

[predicted_label, accuracy, decision_values/prob_estimates] =

svmpredict(test_label, test_matrix, model,

['libsvm_options']); -test_label: An m by 1 vector of prediction

labels. If labels of test data are unknown, simply use

any random values. (type must be

double)-testmatrix: An m by n matrix of m testing

instances with n features. It can be dense or sparse.

(type must be double)-model: The output of

svmtrain.-libsvm_options: A string of testing options in

the same format as that of

LIBSVM.=============== English:libsvm_options:-s

svm_type : set type of SVM (default 0)0 -- C-SVC1 -- nu-SVC2 --

one-class SVM3 -- epsilon-SVR4 -- nu-SVR-t kernel_type : set type

of kernel function (default 2)0 -- linear: u'*v1 -- polynomial:

(gamma*u'*v + coef0)^degree2 -- radial basis function:

exp(-gamma*|u-v|^2)3 -- sigmoid: tanh(gamma*u'*v + coef0)4 --

precomputed kernel (kernel values in training_instance_matrix)-d

degree : set degree in kernel function (default 3)-g gamma : set

gamma in kernel function (default 1/k)-r coef0 : set coef0 in

kernel function (default 0)-c cost : set the parameter C of C-SVC,

epsilon-SVR, and nu-SVR (default 1)-n nu : set the parameter nu of

nu-SVC, one-class SVM, and nu-SVR (default 0.5)-p epsilon : set the

epsilon in loss function of epsilon-SVR (default 0.1)-m cachesize :

set cache memory size in MB (default 100)-e epsilon : set tolerance

of termination criterion (default 0.001)-h shrinking: whether to

use the shrinking heuristics, 0 or 1 (default 1)-b

probability_estimates: whether to train a SVC or SVR model for

probability estimates, 0 or 1 (default 0)-wi weight: set the

parameter C of class i to weight*C, for C-SVC (default 1)-v n:

n-fold cross validation

mode==========================================================Chinese:Options:可用的选项即表示的涵义如下  -s

svm类型:SVM设置类型(默认0)  0 -- C-SVC  1 --v-SVC  2 – 一类SVM  3 -- e

-SVR  4 -- v-SVR  -t 核函数类型:核函数设置类型(默认2)  0 – 线性:u'v  1 – 多项式:(r*u'v

+ coef0)^degree  2 – RBF函数:exp(-r|u-v|^2)  3 –sigmoid:tanh(r*u'v +

coef0)  -d degree:核函数中的degree设置(针对多项式核函数)(默认3)  -g

r(gama):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)(默认1/ k)  -r

coef0:核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0)  -c cost:设置C-SVC,e

-SVR和v-SVR的参数(损失函数)(默认1)  -n nu:设置v-SVC,一类SVM和v- SVR的参数(默认0.5)  -p

p:设置e -SVR 中损失函数p的值(默认0.1)  -m

cachesize:设置cache内存大小,以MB为单位(默认40)  -e eps:设置允许的终止判据(默认0.001)  -h

shrinking:是否使用启发式,0或1(默认1)  -wi

weight:设置第几类的参数C为weight?C(C-SVC中的C)(默认1)  -v n:

n-fold交互检验模式,n为fold的个数,必须大于等于2  其中-g选项中的k是指输入数据中的属性数。option -v

随机地将数据剖分为n部分并计算交互检验准确度和均方根误差。以上这些参数设置可以按照SVM的类型和核函数所支持的参数进行任意组合,如果设置的参数在函数或SVM类型中没有也不会产生影响,程序不会接受该参数;如果应有的参数设置不正确,参数将采用默认值。

%%-------------------------分割线----------------------------------------------------------------------

3.有时需要将变量转化为字符形式,这个很有用的,这个时候就需要记住num2str(variable,precison)哦。

例如:

用svm时,model=svmtrain(Lables,constants,'-c 1 -g 10')

为了可以用循环来调试到一个好的参数,可以用num2str这个函数将变量转化为字符型。

a=0.8, b=10,

cmd=['-c',' ',num2str(a),' ','-g',' ',num2str(b)];%这里'

'是为了空格

model=svmstrain(Labels,constant,cmd);

%%-------------------------分割线----------------------------------------------------------------------

4.svm一点资料

你可能感兴趣的:(matlab的train函数用法,SVMtrain函数用法)