1.最近结合ACO和SVM做分类,于是仔细看了下svmtrain的help文档。现结合该doc文档,做简单整理,希望对
svm入门者有点帮助哦。
svmtrain:用于训练支持向量机分类器。语法格式如下:
SVMStruct = svmtrain(Training, Group)
SVMStruct = svmtrain(..., 'Kernel_Function',
Kernel_FunctionValue, ...)
SVMStruct = svmtrain(..., 'RBF_Sigma',
RBFSigmaValue, ...)
SVMStruct = svmtrain(..., 'Polyorder',
PolyorderValue, ...)
SVMStruct = svmtrain(..., 'Mlp_Params',
Mlp_ParamsValue, ...)
SVMStruct = svmtrain(..., 'Method', MethodValue,
...)
SVMStruct = svmtrain(..., 'QuadProg_Opts',
QuadProg_OptsValue, ...)
SVMStruct = svmtrain(..., 'SMO_Opts',
SMO_OptsValue, ...)
SVMStruct = svmtrain(..., 'BoxConstraint',
BoxConstraintValue, ...)
SVMStruct = svmtrain(..., 'Autoscale',
AutoscaleValue, ...)
SVMStruct = svmtrain(..., 'Showplot',
ShowplotValue, ...)
解释如下:
Training是一个M行N列的矩阵,M是样本数,N是特征维数。Group:是个列向量,表示样本对应的类别,用字符串表示(可以用数字或单个字符)。
classifier is returned in SVMStruct, a structure with the
following fields. 'Kernel_Function',
Kernel_FunctionValue,.......'Showplot',
ShowplotValue这些在svmtrain中是可选项。他们在svmtrain中出现的顺序是无关紧要的。但必须成对出现,前面单引号里的是字符标记,后面给出的是对应的值。Kernel_FunctionValue
有如下些可选类别:
linear — Default. Linear kernel or dot product.
quadratic — Quadratic kernel.
rbf — Gaussian Radial Basis Function kernel with a default
scaling factor, sigma, of 1.
polynomial — Polynomial kernel with a default order of 3.
mlp — Multilayer Perceptron kernel with default scale and bias
parameters of [1, -1].
如可通过如下来设定核函数为Gaussian Radial Basis Function
kernel :
SVMStruct = svmtrain(Training, Group,
'Kernel_Function', rbf);
%%-------------------------分割线----------------------------------------------------------------------
2 svmtrain(
… );
%通过训练集来训练模型 svmpredict( …
);%对测试集进行预测 >>model
= svmtrain(train_label, train_matrix,
['libsvm_options']); -train_label: An m by 1 vector of training
labels (type must be
double).-train_matrix: An m by n matrix of m training
instances with n features. It can be dense or sparse
(type must be
double).-libsvm_options: A string of training options
in the same format as that of LIBSVM.===============The 'svmtrain'
function returns a model which can be used for
futureprediction. >>
[predicted_label, accuracy, decision_values/prob_estimates] =
svmpredict(test_label, test_matrix, model,
['libsvm_options']); -test_label: An m by 1 vector of prediction
labels. If labels of test data are unknown, simply use
any random values. (type must be
double)-testmatrix: An m by n matrix of m testing
instances with n features. It can be dense or sparse.
(type must be double)-model: The output of
svmtrain.-libsvm_options: A string of testing options in
the same format as that of
LIBSVM.=============== English:libsvm_options:-s
svm_type : set type of SVM (default 0)0 -- C-SVC1 -- nu-SVC2 --
one-class SVM3 -- epsilon-SVR4 -- nu-SVR-t kernel_type : set type
of kernel function (default 2)0 -- linear: u'*v1 -- polynomial:
(gamma*u'*v + coef0)^degree2 -- radial basis function:
exp(-gamma*|u-v|^2)3 -- sigmoid: tanh(gamma*u'*v + coef0)4 --
precomputed kernel (kernel values in training_instance_matrix)-d
degree : set degree in kernel function (default 3)-g gamma : set
gamma in kernel function (default 1/k)-r coef0 : set coef0 in
kernel function (default 0)-c cost : set the parameter C of C-SVC,
epsilon-SVR, and nu-SVR (default 1)-n nu : set the parameter nu of
nu-SVC, one-class SVM, and nu-SVR (default 0.5)-p epsilon : set the
epsilon in loss function of epsilon-SVR (default 0.1)-m cachesize :
set cache memory size in MB (default 100)-e epsilon : set tolerance
of termination criterion (default 0.001)-h shrinking: whether to
use the shrinking heuristics, 0 or 1 (default 1)-b
probability_estimates: whether to train a SVC or SVR model for
probability estimates, 0 or 1 (default 0)-wi weight: set the
parameter C of class i to weight*C, for C-SVC (default 1)-v n:
n-fold cross validation
mode==========================================================Chinese:Options:可用的选项即表示的涵义如下 -s
svm类型:SVM设置类型(默认0) 0 -- C-SVC 1 --v-SVC 2 – 一类SVM 3 -- e
-SVR 4 -- v-SVR -t 核函数类型:核函数设置类型(默认2) 0 – 线性:u'v 1 – 多项式:(r*u'v
+ coef0)^degree 2 – RBF函数:exp(-r|u-v|^2) 3 –sigmoid:tanh(r*u'v +
coef0) -d degree:核函数中的degree设置(针对多项式核函数)(默认3) -g
r(gama):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)(默认1/ k) -r
coef0:核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0) -c cost:设置C-SVC,e
-SVR和v-SVR的参数(损失函数)(默认1) -n nu:设置v-SVC,一类SVM和v- SVR的参数(默认0.5) -p
p:设置e -SVR 中损失函数p的值(默认0.1) -m
cachesize:设置cache内存大小,以MB为单位(默认40) -e eps:设置允许的终止判据(默认0.001) -h
shrinking:是否使用启发式,0或1(默认1) -wi
weight:设置第几类的参数C为weight?C(C-SVC中的C)(默认1) -v n:
n-fold交互检验模式,n为fold的个数,必须大于等于2 其中-g选项中的k是指输入数据中的属性数。option -v
随机地将数据剖分为n部分并计算交互检验准确度和均方根误差。以上这些参数设置可以按照SVM的类型和核函数所支持的参数进行任意组合,如果设置的参数在函数或SVM类型中没有也不会产生影响,程序不会接受该参数;如果应有的参数设置不正确,参数将采用默认值。
%%-------------------------分割线----------------------------------------------------------------------
3.有时需要将变量转化为字符形式,这个很有用的,这个时候就需要记住num2str(variable,precison)哦。
例如:
用svm时,model=svmtrain(Lables,constants,'-c 1 -g 10')
为了可以用循环来调试到一个好的参数,可以用num2str这个函数将变量转化为字符型。
a=0.8, b=10,
cmd=['-c',' ',num2str(a),' ','-g',' ',num2str(b)];%这里'
'是为了空格
model=svmstrain(Labels,constant,cmd);
%%-------------------------分割线----------------------------------------------------------------------
4.svm一点资料