pytorch学习 中 torch.squeeze() 维度进行压缩和torch.unsqueeze()维度进行扩充的用法

torch.squeeze()

这个函数主要对数据的维度进行压缩,去掉维数为1的的维度,比如是一行或者一列这种,一个一行三列(1,3)的数去掉第一个维数为一的维度之后就变成(3)行。squeeze(a)就是将a中所有为1的维度删掉。不为1的维度没有影响。a.squeeze(N) 就是去掉a中指定的维数为一的维度。还有一种形式就是b=torch.squeeze(a,N) a中去掉指定的定的维数为一的维度。

torch.unsqueeze()

这个函数主要是对数据维度进行扩充。给指定位置加上维数为一的维度,比如原本有个三行的数据(3),在0的位置加了一维就变成一行三列(1,3)。a.squeeze(N) 就是在a中指定位置N加上一个维数为1的维度。还有一种形式就是b=torch.squeeze(a,N) a就是在a中指定位置N加上一个维数为1的维度

折叠 torch.squeeze()

a=torch.randn(1,1,3)
print(a,"\n",a.shape,"\n")
b=torch.squeeze(a)
print(b,"\n",b.shape,"\n")
c=torch.squeeze(a,0)
print(c,"\n",c.shape,"\n")
d=torch.squeeze(a,1)
print(d,"\n",d.shape,"\n")
e=torch.squeeze(a,2)#如果去掉第三维,则数不够放了,所以直接保留
print(e,"\n",e.shape,"\n")
tensor([[[-0.1313, -1.0998, -1.9624]]]) 
 torch.Size([1, 1, 3]) 

tensor([-0.1313, -1.0998, -1.9624]) 
 torch.Size([3]) 

tensor([[-0.1313, -1.0998, -1.9624]]) 
 torch.Size([1, 3]) 

tensor([[-0.1313, -1.0998, -1.9624]]) 
 torch.Size([1, 3]) 

tensor([[[-0.1313, -1.0998, -1.9624]]]) 
 torch.Size([1, 1, 3]) 

注意,这里只能去掉维数为1的的维度,如果我们随机生成2x3x4的矩阵,则无效

a=torch.randn(2,3,4)
print(a,"\n",a.shape,"\n")
b=torch.squeeze(a)
print(b,"\n",b.shape,"\n")
c=torch.squeeze(a,0)
print(c,"\n",c.shape,"\n")
d=torch.squeeze(a,1)
print(d,"\n",d.shape,"\n")
e=torch.squeeze(a,2)#如果去掉第三维,则数不够放了,所以直接保留
print(e,"\n",e.shape,"\n")
tensor([[[-0.3312, -0.3903,  0.3732, -0.0094],
         [-1.2595,  0.7815, -0.5044,  0.4635],
         [ 0.3063,  0.8799, -1.4904, -1.1514]],

        [[-0.4506, -1.0506, -2.0797, -0.3425],
         [ 1.9772, -0.4648,  0.2649,  0.8535],
         [-0.4897, -0.4739, -0.4632, -0.4432]]]) 
 torch.Size([2, 3, 4]) 

tensor([[[-0.3312, -0.3903,  0.3732, -0.0094],
         [-1.2595,  0.7815, -0.5044,  0.4635],
         [ 0.3063,  0.8799, -1.4904, -1.1514]],

        [[-0.4506, -1.0506, -2.0797, -0.3425],
         [ 1.9772, -0.4648,  0.2649,  0.8535],
         [-0.4897, -0.4739, -0.4632, -0.4432]]]) 
 torch.Size([2, 3, 4]) 

tensor([[[-0.3312, -0.3903,  0.3732, -0.0094],
         [-1.2595,  0.7815, -0.5044,  0.4635],
         [ 0.3063,  0.8799, -1.4904, -1.1514]],

        [[-0.4506, -1.0506, -2.0797, -0.3425],
         [ 1.9772, -0.4648,  0.2649,  0.8535],
         [-0.4897, -0.4739, -0.4632, -0.4432]]]) 
 torch.Size([2, 3, 4]) 

tensor([[[-0.3312, -0.3903,  0.3732, -0.0094],
         [-1.2595,  0.7815, -0.5044,  0.4635],
         [ 0.3063,  0.8799, -1.4904, -1.1514]],

        [[-0.4506, -1.0506, -2.0797, -0.3425],
         [ 1.9772, -0.4648,  0.2649,  0.8535],
         [-0.4897, -0.4739, -0.4632, -0.4432]]]) 
 torch.Size([2, 3, 4]) 

tensor([[[-0.3312, -0.3903,  0.3732, -0.0094],
         [-1.2595,  0.7815, -0.5044,  0.4635],
         [ 0.3063,  0.8799, -1.4904, -1.1514]],

        [[-0.4506, -1.0506, -2.0797, -0.3425],
         [ 1.9772, -0.4648,  0.2649,  0.8535],
         [-0.4897, -0.4739, -0.4632, -0.4432]]]) 
 torch.Size([2, 3, 4]) 

展开 torch.unsqueeze()

a=torch.randn(1,3)
print(a,"\n",a.shape,"\n")
b=torch.unsqueeze(a,0)
print(b,"\n",b.shape,"\n")
c=torch.unsqueeze(a,1)
print(c,"\n",c.shape,"\n")
d=torch.unsqueeze(a,2)
print(d,"\n",d.shape,"\n")
tensor([[-0.3519, -0.3158,  1.1978]]) 
 torch.Size([1, 3]) 

tensor([[[-0.3519, -0.3158,  1.1978]]]) 
 torch.Size([1, 1, 3]) 

tensor([[[-0.3519, -0.3158,  1.1978]]]) 
 torch.Size([1, 1, 3]) 

tensor([[[-0.3519],
         [-0.3158],
         [ 1.1978]]]) 
 torch.Size([1, 3, 1]) 

你可能感兴趣的:(pytorch,python)