1. 语音类实现 (实现读取wav/pcm,STFT)

[C++ 基于Eigen库实现CRN前向推理]

第一部分:WavFile.class (实现读取wav/pcm,实现STFT)

  • 前言:(Eigen库使用记录)
  • 第一部分:WavFile.class (实现读取wav/pcm,实现STFT)
  • 第二部分:Conv2d实现
  • 第三部分:TransposedConv2d实现 (mimo,padding,stride,dilation,kernel,outpadding)
  • 第四部分:NonLinearity (Sigmoid,Tanh,ReLU,ELU,Softplus)
  • 第五部分:LSTM
  • GITHUB仓库

1. 读写语音文件(wav/pcm)

1.1 wav文件读写

语音文件有很多后缀格式,这里只实现了两种后缀名,.wav和.pcm。

  • WAV文件遵守资源交换文件格式之规则,在文件的前44(或46)字节放置标头(header),使播放器或编辑器能够简单掌握文件的基本信息,其内容以区块(chunk)为最小单位,每一区块长度为4字节,而区块之上则由子区块包裹,每一子区块长度不拘,但须在前头先宣告标签及长度(字节)。
  • 标头的前3个区块记录文件格式及长度;
  • 接着第一个子区块包含8个区块,记录声道数量、采样率等信息;
  • 接着第二个子区块才是真正的音频资料,长度则视音频长度而定。
  • 内容如下表所示。须注意的是,每个区块的端序不尽相同,而音频内容本身则是采用小端序。

1. 语音类实现 (实现读取wav/pcm,STFT)_第1张图片

  • 读Wav文件
    图中所示是一个wav的标准格式,但wav还有其他不同的存储格式,有些有扩展块之类的,需要根据具体的语音文件来确定。比如我用python中soudfile生成的语音,其format_tag=3,format_length=18(通常为16)。由于我没用到其他格式的情况,直接在下方用if else讨论format_tag=1和=3的情况。
    总而言之,读取wav其实就是一个解析头文件的过程,把对应的头信息存下来,再去读取数据就好了。-
    读wav文件的具体代码给出(后面会给整体的h文件和cpp文件):

    void Wav_File::LoadWavFile(const char *file_path) {
        FILE *fp = fopen(file_path, "rb");
        if (fp) {
            fread(this->id_riff, sizeof(char), 4, fp);
            this->id_riff[4] = '\0';
            fread(&this->file_size, sizeof(int16_t), 2, fp);
            fread(this->id_wave, sizeof(char), 4, fp);
            this->id_wave[4] = '\0';
            fread(this->id_fmt, sizeof(char), 4, fp);
            this->id_fmt[4] = '\0';
            fread(&this->format_length, sizeof(int16_t), 2, fp);
            fread(&this->format_tag, sizeof(int16_t), 1, fp);
            fread(&this->channels, sizeof(int16_t), 1, fp);
            fread(&this->sample_rate, sizeof(int16_t), 2, fp);
            fread(&this->avg_bytes_sec, sizeof(int16_t), 2, fp);
            fread(&this->block_align, sizeof(int16_t), 1, fp);
            fread(&this->bits_per_sample, sizeof(int16_t), 1, fp);
            if (this->format_tag == 1) {
                fread(this->id_data, sizeof(char), 4, fp);
                this->id_data[4] = '\0';
                fread(&this->data_size, sizeof(int16_t), 2, fp);
                this->wav_size = this->data_size / sizeof(int16_t);
                this->ip_raw = (int16_t *) malloc(this->data_size);
                fread(this->ip_raw, sizeof(int16_t), this->wav_size, fp);
    
                this->data = (float_t *) malloc(this->wav_size * sizeof(float_t));
                for (int i = 0; i < this->wav_size; i++) {
                    this->data[i] = (float_t) (this->ip_raw[i] * 1.0 / 32768);
                }
    
            } else if (this->format_tag == 3) {
                fread(&this->cb_size, sizeof(int16_t), 1, fp);
                fread(this->id_data, sizeof(char), 4, fp);
                this->id_data[4] = '\0';
                fread(&this->data_size, sizeof(int16_t), 2, fp);
                this->wav_size = this->data_size / sizeof(float);
                this->fp_raw = (float *) malloc(this->data_size);
                fread(this->fp_raw, sizeof(float), this->wav_size, fp);
                this->data = (float_t *) malloc(this->wav_size * sizeof(float_t));
                for (int i = 0; i < this->wav_size; i++) {
                    this->data[i] = this->fp_raw[i];
                }
            }
        }
        fclose(fp);
    
    }
    
  • 写出Wav文件
    Wav文件写出和读入是完全对应的,把读到的信息反向写出就可以了。
    如果对数据有所操作,需要去找对应的变量进行修改,比如长度,需要更新总文件的file_size以及data chunk的data_size。
    具体代码给出:

    void Wav_File::WriteWavFile(const char *dest_path) {
        for (int i = 0; i < wav_size; i++) {
            if (format_tag == 1)
                this->ip_raw[i] = (int16_t) (this->data[i] * 32768);
            else
                this->fp_raw[i] = this->data[i];
        }
    
        FILE *fp = fopen(dest_path, "wb");
        if (fp) {
    
            fwrite(this->id_riff, sizeof(char), 4, fp);
            fwrite(&this->file_size, sizeof(int16_t), 2, fp);
            fwrite(this->id_wave, sizeof(char), 4, fp);
            fwrite(this->id_fmt, sizeof(char), 4, fp);
            fwrite(&this->format_length, sizeof(int16_t), 2, fp);
            fwrite(&this->format_tag, sizeof(int16_t), 1, fp);
            fwrite(&this->channels, sizeof(int16_t), 1, fp);
            fwrite(&this->sample_rate, sizeof(int16_t), 2, fp);
            fwrite(&this->avg_bytes_sec, sizeof(int16_t), 2, fp);
            fwrite(&this->block_align, sizeof(int16_t), 1, fp);
            fwrite(&this->bits_per_sample, sizeof(int16_t), 1, fp);
            if (this->format_tag == 3) {
                fwrite(&this->cb_size, sizeof(int16_t), 1, fp);
            }
            fwrite(this->id_data, sizeof(char), 4, fp);
            fwrite(&this->data_size, sizeof(int16_t), 2, fp);
            if (this->format_tag == 1) {
                fwrite(this->ip_raw, sizeof(int16_t), this->wav_size, fp);
            } else if (this->format_tag == 3) {
                fwrite(this->fp_raw, sizeof(float), this->wav_size, fp);
            }
    
        }
        fclose(fp);
    
    }
    
    
1.2 PCM文件读写

PCM文件没有格式,是直接存的数据,所以需要自己知道采样率,通道数,以及数据类型,然后直接读写就可以了,代码如下:

void Wav_File::LoadPcmFile(const char *file_path) {
    FILE *fp = fopen(file_path, "rb");

    // 计算文件长度
    fseek(fp, 0L, SEEK_END);
    this->wav_size = ftell(fp) / sizeof(float);
    fseek(fp, 0L, SEEK_SET);

    //申请内存空间 这边自己知道存储的是float32,所以申请float的内存空间
    this->fp_raw = (float *) malloc(this->wav_size * sizeof(float));
    fread(this->fp_raw, sizeof(float), this->wav_size, fp);
    fclose(fp);

	// 这部分是统一转换成float32存在data里,因为wav是用int16存的
    for (int i = 0; i < this->wav_size; i++) {
        this->data[i] = this->fp_raw[i];
    }
}

void Wav_File::WritePcmFile(const char *dest_path) {
    for (int i = 0; i < this->wav_size; i++) {
        this->fp_raw[i] = this->data[i];
    }
    FILE *fp = fopen(dest_path, "wb");
    fwrite(this->fp_raw, sizeof(float), this->wav_size, fp);
    fclose(fp);
}

2. STFT实现

2.1 设置STFT参数,窗函数

这块主要设置窗长,窗移,窗函数类型等,并为频谱数据申请内存空间
提供了三种窗实现,hanning,hamming和sqrt窗(我自己叫的)。
可以看到有两份spec和mag,pha内存,spec是自定义复数类型,用于存储由蝶形算法生成的频谱(因为对FFT实现不是很熟悉,根据网上照猫画虎,只能对2^N窗长进行变换)。
而另一份是对应不同基的FFT,没搞懂是用的现成的,具体代码就不在这放了,可以去github上看。

void Wav_File::setSTFT(int64_t frame_size, int64_t frame_shift, const char *win_type) {
    this->frame_size = frame_size;
    this->frame_shift = frame_shift;
    this->fft_size = this->frame_size;
    this->frame_num = this->wav_size / frame_shift + 1;

    this->win_type = win_type;
    this->setWindow(this->win_type);

    this->spec = (Complex **) malloc((this->fft_size / 2 + 1) * sizeof(*spec));
    for (int i = 0; i < (this->fft_size / 2 + 1); i++)
        this->spec[i] = (Complex *) malloc(this->frame_num * sizeof(Complex));

    this->mag = (float_t **) malloc((this->fft_size / 2 + 1) * sizeof(*this->mag));
    for (int i = 0; i < (this->fft_size / 2 + 1); i++)
        this->mag[i] = (float_t *) malloc(frame_num * sizeof(float_t));

    this->phase = (float_t **) malloc((this->fft_size / 2 + 1) * sizeof(*this->phase));
    for (int i = 0; i < (this->fft_size / 2 + 1); i++)
        this->phase[i] = (float_t *) malloc(frame_num * sizeof(float_t));

    // nfft
    this->spec_real = (float_t **) malloc(this->frame_num * sizeof(*spec_real));
    for (int i = 0; i < this->frame_num; i++)
        this->spec_real[i] = (float_t *) malloc((this->fft_size / 2 + 1) * sizeof(float_t));

    this->spec_imag = (float_t **) malloc(this->frame_num * sizeof(*spec_imag));
    for (int i = 0; i < this->frame_num; i++)
        this->spec_imag[i] = (float_t *) malloc((this->fft_size / 2 + 1) * sizeof(float_t));

    this->spec_mag = (float_t **) malloc(this->frame_num * sizeof(*spec_mag));
    for (int i = 0; i < this->frame_num; i++)
        this->spec_mag[i] = (float_t *) malloc((this->fft_size / 2 + 1) * sizeof(float_t));

    this->spec_pha = (float_t **) malloc(this->frame_num * sizeof(*spec_pha));
    for (int i = 0; i < this->frame_num; i++)
        this->spec_pha[i] = (float_t *) malloc((this->fft_size / 2 + 1) * sizeof(float_t));


}

void Wav_File::setWindow(const char *winType) {
    double_t a0, a1;
    this->window = (float_t *) malloc(this->frame_size * sizeof(float_t));
    int frac = this->frame_size - 1;
    if (strcmp(winType, "hamming") == 0) {
        for (int i = 0; i < this->frame_size; i++) {
            this->window[i] = float(0.540000000 - 0.460000000 * cos(PI * 2 * i / frac));
        }
    } else if (strcmp(winType, "hanning") == 0) {
        for (int i = 0; i < this->frame_size; i++) {
            this->window[i] = float(0.500000000 - 0.500000000 * cos(PI * 2 * i / frac));
        }
    } else if (strcmp(winType, "sqrt") == 0) {
        for (int i = 0; i < this->frame_size; i++) {
            this->window[i] = (float) sqrtf((0.5f - 0.5f * cosf(i / (float) (this->frame_size - 1) * 2 * PI)));
        }
    }
}
2.2 2^N版FFT
void Wav_File::STFT() {
    std::vector<float_t> padding_data;
    for (int i = 0; i < this->frame_shift; i++)
        padding_data.push_back(this->data[this->frame_shift - i]);
    for (int i = 0; i < this->wav_size; i++)
        padding_data.push_back(this->data[i]);
    for (int i = 0; i < this->frame_shift; i++)
        padding_data.push_back(this->data[this->wav_size - i - 2]);

    this->real = (float_t *) malloc(sizeof(float_t) * this->frame_size);
    this->imag = (float_t *) malloc(sizeof(float_t) * this->frame_size);

    for (int i = 0; i < this->frame_num; i++) {
        for (int j = 0; j < this->frame_size; j++) {
            this->real[j] = padding_data[i * this->frame_shift + j] * this->window[j];
            this->imag[j] = 0.0;
        }

        FFT(this->real, this->imag, this->fft_size);

        for (int j = 0; j <= this->fft_size / 2; j++) {
            this->spec[j][i].real = this->real[j];
            this->spec[j][i].imag = this->imag[j];
        }
    }
}

void Wav_File::ISTFT() {
    this->real = (float_t *) malloc(sizeof(float_t) * this->frame_size);
    this->imag = (float_t *) malloc(sizeof(float_t) * this->frame_size);
    auto *temp = (float_t *) malloc(sizeof(float_t) * (data_size + 2 * frame_shift));
    auto *ola = (float_t *) malloc(sizeof(float_t) * (data_size + 2 * frame_shift));

    for (int i = 0; i < this->frame_num; i++) {
        //��N_FFT/2+1����N_FFT(����Գ�)
        for (int j = 0; j < this->fft_size / 2 + 1; j++) {
            real[j] = spec[j][i].real;
            imag[j] = spec[j][i].imag;
        }
        for (int j = this->fft_size / 2 + 1; j < this->fft_size; j++) {
            real[j] = spec[this->fft_size - j][i].real;
            imag[j] = -spec[this->fft_size - j][i].imag;
        }

        IFFT(real, imag, this->fft_size);

        for (int j = 0; j < frame_size; j++) {
            temp[i * frame_shift + j] += (real[j] * this->window[j]);
            ola[i * frame_shift + j] += (this->window[j] * this->window[j]);
        }
    }

    for (int i = 0; i < (frame_num + 1) * frame_shift; i++) {
        if (temp[i] != 0) {
            temp[i] /= ola[i];
        }
    }
    for (int i = 0; i < (frame_num - 1) * frame_shift; i++)
        this->data[i] = temp[i + frame_shift];

//    超出部分就保持原样,不降噪就好了
//    int sub = this->wav_size - (frame_num - 1) * frame_shift;
//    this->file_size -= sub;
//    this->wav_size -= sub;
//    this->data_size -= sub;
}

void Wav_File::FFT(float_t param_real[], float_t param_imag[], int16_t param_n) {
    float_t treal, timag, ureal, uimag, arg;
    int32_t m, k, j, t, index1, index2;
    auto *wreal = (float_t *) malloc(frame_shift * sizeof(float_t));
    auto *wimag = (float_t *) malloc(frame_shift * sizeof(float_t));


    this->bitrp(param_real, param_imag, param_n);

    arg = -2 * PI / param_n;
    treal = cosf(arg);
    timag = sinf(arg);
    wreal[0] = 1.0;
    wimag[0] = 0.0;
    for (j = 1; j < param_n / 2; j++) {
        wreal[j] = wreal[j - 1] * treal - wimag[j - 1] * timag;
        wimag[j] = wreal[j - 1] * timag + wimag[j - 1] * treal;
    }

    for (m = 2; m <= param_n; m *= 2) {
        for (k = 0; k < param_n; k += m) {
            for (j = 0; j < m / 2; j++) {
                index1 = k + j;
                index2 = index1 + m / 2;
                t = param_n * j / m;
                treal = wreal[t] * param_real[index2] - wimag[t] * param_imag[index2];
                timag = wreal[t] * param_imag[index2] + wimag[t] * param_real[index2];
                ureal = param_real[index1];
                uimag = param_imag[index1];
                param_real[index1] = ureal + treal;
                param_imag[index1] = uimag + timag;
                param_real[index2] = ureal - treal;
                param_imag[index2] = uimag - timag;
            }
        }
    }
    free(wreal);
    free(wimag);
}

void Wav_File::IFFT(float_t param_real[], float_t param_imag[], int16_t param_n) {
    float_t treal, timag, ureal, uimag, arg;
    int m, k, j, t, index1, index2;
    auto *wreal = (float_t *) malloc(frame_shift * sizeof(float_t));
    auto *wimag = (float_t *) malloc(frame_shift * sizeof(float_t));

    bitrp(param_real, imag, param_n);

    arg = 2 * PI / param_n;
    treal = cosf(arg);
    timag = sinf(arg);
    wreal[0] = 1.0;
    wimag[0] = 0.0;
    for (j = 1; j < param_n / 2; j++) {
        wreal[j] = wreal[j - 1] * treal - wimag[j - 1] * timag;
        wimag[j] = wreal[j - 1] * timag + wimag[j - 1] * treal;
    }

    for (m = 2; m <= param_n; m *= 2) {
        for (k = 0; k < param_n; k += m) {
            for (j = 0; j < m / 2; j++) {
                index1 = k + j;
                index2 = index1 + m / 2;
                t = param_n * j / m;
                treal = wreal[t] * param_real[index2] - wimag[t] * param_imag[index2];
                timag = wreal[t] * param_imag[index2] + wimag[t] * param_real[index2];
                ureal = param_real[index1];
                uimag = param_imag[index1];
                param_real[index1] = ureal + treal;
                param_imag[index1] = uimag + timag;
                param_real[index2] = ureal - treal;
                param_imag[index2] = uimag - timag;
            }
        }
    }

    for (j = 0; j < param_n; j++) {
        real[j] /= param_n;
        imag[j] /= param_n;
    }
    free(wreal);
    free(wimag);
}

void Wav_File::bitrp(float_t param_real[], float_t param_imag[], int16_t param_n) {
    int i, j, a, b, p;

    for (i = 1, p = 0; i < param_n; i *= 2) {
        p++;
    }
    for (i = 0; i < param_n; i++) {
        a = i;
        b = 0;
        for (j = 0; j < p; j++) {
            b = (b << 1) + (a & 1);    // b = b * 2 + a % 2;
            a >>= 1;        // a = a / 2;
        }
        if (b > i) {
            std::swap(param_real[i], param_real[b]);
            std::swap(param_imag[i], param_imag[b]);
        }
    }
}

2.3 nfft

不放了 看github吧

3. 其他相关操作

3.1 能量归一化
float_t Wav_File::getNorm(float_t scale) {
    if (scale == 0) {
        float_t square = 0.0;
        for (int i = 0; i < this->wav_size; i++) {
            square += powf(this->data[i], 2);
        }
        scale = sqrtf((float_t) this->wav_size / square);
        for (int i = 0; i < this->wav_size; i++) {
            this->data[i] *= scale;
        }
    } else {
        for (int i = 0; i < this->wav_size; i++) {
            this->data[i] /= scale;
        }
    }
    return scale;
}
3.2 求幅度谱
void Wav_File::getMagnitude() {
    for (int i = 0; i < this->frame_num; i++) {
        for (int j = 0; j < this->fft_size / 2 + 1; j++) {
            this->spec_mag[i][j] = sqrtf(powf(spec_real[i][j], 2) + powf(spec_imag[i][j], 2));
        }
    }
}
3.3 求相位谱
void Wav_File::getPhase() {
    for (int i = 0; i < this->frame_num; i++) {
        for (int j = 0; j < this->fft_size / 2 + 1; j++) {
            this->spec_pha[i][j] = atan2f(spec_imag[i][j], spec_real[i][j]);
        }
    }
}
3.4 幅度谱相位谱还原频谱
void Wav_File::magToSpec() {
    for (int i = 0; i < this->frame_num; i++) {
        for (int j = 0; j < this->fft_size / 2 + 1; j++) {
            spec_real[i][j] = this->spec_mag[i][j] * cosf(this->spec_pha[i][j]);
            spec_imag[i][j] = this->spec_mag[i][j] * sinf(this->spec_pha[i][j]);
        }
    }
}

4. 参考链接

[1] WAV文件格式详解
[2] GITHUB源码

你可能感兴趣的:(C++,数字信号处理)