目录
1--基于Qt Designer设计ui窗口
2--基于face_recognition实现人脸
3--主函数
4--结果展示
5--参考
① 代码:(命名为face_rec.py,后面主函数会调用)
import face_recognition
import cv2
import numpy as np
class face_rec():
def __init__(self):
# 导入图片库、进行编码
self.load_database()
# 初始化
self.face_locations = []
self.face_encodings = []
self.face_names = []
def load_database(self): # 导入图片库、进行编码
self.dbpath = "./database/"
obama_image = face_recognition.load_image_file(self.dbpath + "obama.jpg")
biden_image = face_recognition.load_image_file(self.dbpath + "biden.jpg")
kobe_image = face_recognition.load_image_file(self.dbpath + "kobe.jpg")
liujinfu_image = face_recognition.load_image_file(self.dbpath + "liujinfu.jpg")
obama_face_encoding = face_recognition.face_encodings(obama_image)[0]
biden_face_encoding = face_recognition.face_encodings(biden_image)[0]
kobe_face_encoding = face_recognition.face_encodings(kobe_image)[0]
liujinfu_face_encoding = face_recognition.face_encodings(liujinfu_image)[0]
# 记录编码及标签
self.known_face_encodings = [
obama_face_encoding,
biden_face_encoding,
kobe_face_encoding,
liujinfu_face_encoding
]
self.known_face_names = [
"Barack Obama",
"Joe Biden",
"kobe",
"liujinfu"
]
def rec(self, frame):
self.frame = frame
# Resize
small_frame = cv2.resize(self.frame, (0, 0), fx=0.25, fy=0.25)
# BGR -> RGB
rgb_small_frame = small_frame[:, :, ::-1]
# 当前帧与图片库进行匹配
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# 判断是否匹配
matches = face_recognition.compare_faces(self.known_face_encodings, face_encoding)
name = "Unknown"
# 计算距离
face_distances = face_recognition.face_distance(self.known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = self.known_face_names[best_match_index]
face_names.append(name)
# 可视化结果
for (top, right, bottom, left), name in zip(face_locations, face_names):
top *= 4
right *= 4
bottom *= 4
left *= 4
# 框出
cv2.rectangle(self.frame, (left, top), (right, bottom), (0, 0, 255), 2)
cv2.rectangle(self.frame, (left, bottom - 35), (right, bottom), (0, 0, 255), cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
# label
cv2.putText(self.frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255), 1)
return self.frame
注:增加人脸库需要修改load_database()函数;
代码:
import sys
import cv2
from PyQt5 import QtCore, QtGui, QtWidgets, uic
from PyQt5.QtGui import QImage
from PyQt5.QtWidgets import *
from face_rec import face_rec
class MyWindow(QtWidgets.QWidget):
def __init__(self, parent=None):
super(MyWindow, self).__init__(parent)
self.timer_camera = QtCore.QTimer() # 初始化定时器
self.cap = cv2.VideoCapture() # 初始化摄像头
self.cam_idx = 0 # 初始化摄像头索引
self.set_ui() # 初始化ui
self.slot_init() # 初始化槽函数连接
# 初始化模型
self.face_rec = face_rec()
def set_ui(self): # 初始化ui界面
self.ui = uic.loadUi("./mainWidget.ui")
self.button_open_camera = self.ui.pushButton
self.button_close = self.ui.pushButton_2
self.button_rec = self.ui.pushButton_3
self.label_show_camera = self.ui.label
self.button_rec.setCheckable(True) # 设置为开关状态
def slot_init(self): # 建立信号与槽函数的通信连接
self.button_open_camera.clicked.connect(self.button_open_camera_click)
self.timer_camera.timeout.connect(self.show_camera)
self.button_close.clicked.connect(self.close)
def button_open_camera_click(self):
if self.timer_camera.isActive() == False:
self.cap.open(self.cam_idx)
self.timer_camera.start(30) # 30ms 刷新一次定时器
self.button_open_camera.setText(u'关闭摄像头')
else:
self.timer_camera.stop()
self.cap.release()
self.label_show_camera.clear()
self.button_open_camera.setText(u'打开摄像头')
# 显示图像
def show_camera(self):
flag, self.frame = self.cap.read()
if self.button_rec.isChecked():
'''
这里调用人脸识别识别函数,传入当前帧的图片,返回人脸识别后的图片;
这里的人脸识别函数可以自由定义,因为face_recognition发行时间太久了,导致识别效果较差;
可以采用yolo+deepface进行人脸识别;
'''
img = self.face_rec.rec(self.frame)
frame = QImage(img, img.shape[1], img.shape[0], img.strides[0], QImage.Format_RGB888).rgbSwapped()
self.label_show_camera.setPixmap(QtGui.QPixmap.fromImage(frame))
self.button_rec.setText(u'结束人脸识别')
else:
frame = QtGui.QImage(self.frame, self.frame.shape[1], self.frame.shape[0], self.frame.strides[0],
QtGui.QImage.Format_RGB888).rgbSwapped()
self.label_show_camera.setPixmap(QtGui.QPixmap.fromImage(frame))
self.button_rec.setText(u'开始人脸识别')
# 重写closeEvent
def closeEvent(self, event):
ok = QtWidgets.QPushButton()
cancel = QtWidgets.QPushButton()
msg = QtWidgets.QMessageBox(QtWidgets.QMessageBox.Warning, u'关闭', u'是否关闭!')
msg.addButton(ok, QtWidgets.QMessageBox.ActionRole)
msg.addButton(cancel, QtWidgets.QMessageBox.RejectRole)
ok.setText(u'确定')
cancel.setText(u'取消')
if msg.exec_() == QtWidgets.QMessageBox.RejectRole:
event.ignore()
else:
if self.cap.isOpened():
self.cap.release()
if self.timer_camera.isActive():
self.timer_camera.stop()
event.accept()
if __name__ == '__main__':
# 创建对象
app = QApplication(sys.argv)
# 创建窗口、展示窗口
w = MyWindow()
w.ui.show()
# 程序进行循环等待状态
app.exec_()
几点需要说明的地方:
① 在主函数中定义了一个开关按钮,即 self.button_rec.setCheckable(True),点击按钮可以切换开和关两种状态,通过 self.button_rec.isChecked() 可以判断当前按钮处于的开关状态;
② 在逐帧读取视频流的时候,采取了基于定时器的方法,并把定时器间隔设置为30ms,对应常规视频流的帧间隔,即(1 / fps)* 1000;
不足之处:
① Qt采用的是单线程处理视频帧,不利于后续项目的进一步扩展;
② 采用的人脸识别模型是基于face_recognition,其发行时间较长,识别准确率不算特别高;
QT开关按钮的使用
QT使用定时器显示实时视频流
基于face_recognition进行实时视频流的人脸识别