1.创建虚拟环境
conda create -n py3.9 python=3.9
2.激活虚拟环境
conda activate py3.9
3.安装lazypredict
pip3 install lazypredict==0.2.7 numpy pandas tqdm scikit-learn xgboost lightgbm
4.安装ipykernel (第一次导入虚拟环境的要下载)
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple ipykernel
5.将虚拟环境py3.9导入jupyter的kernel中(自己设置显示的名字为python3.9)
python -m ipykernel install --name py3.9 --display-name python3.9
6.查看kernel
jupyter kernelspec list
7.修改配置文件
进入 D:\mystudysoft\Anaconda3\envs\py3.9\Lib\site-packages\lazypredict 目录下
修改Supervised.py文件
修改import部分
# from sklearn.utils.testing import all_estimators
from sklearn.utils import all_estimators
在 removed_classifiers中修改如下内容
# sklearn.ensemble.gradient_boosting.GradientBoostingClassifier
sklearn.ensemble.GradientBoostingClassifier
# sklearn.gaussian_process.gpc.GaussianProcessClassifier
sklearn.gaussian_process._gpc.GaussianProcessClassifier
# sklearn.neural_network.multilayer_perceptron.MLPClassifier
sklearn.neural_network.MLPClassifier
# sklearn.linear_model.logistic.LogisticRegressionCV
sklearn.linear_model.LogisticRegressionCV
# sklearn.neighbors.classification.RadiusNeighborsClassifier
sklearn.neighbors.RadiusNeighborsClassifier
# sklearn.ensemble.voting.VotingClassifier
sklearn.ensemble.VotingClassifier
在removed_regressors中修改如下内容
# removed_regressors = [('TheilSenRegressor', sklearn.linear_model.theil_sen.TheilSenRegressor),
removed_regressors = [('TheilSenRegressor', sklearn.linear_model.TheilSenRegressor),
# 去掉这一行
('_SigmoidCalibration', sklearn.calibration._SigmoidCalibration)
保存退出
8.在jupyter中测试是否安装成功
import lazypredict
from lazypredict.Supervised import LazyRegressor
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
data = load_breast_cancer()
x = data.data
y = data.target
x_train,x_test,y_train, y_test = train_test_split(x,y,test_size =.5,random_state =123)
clf = LazyRegressor(verbose=0,ignore_warnings=True, custom_metric=None)
models,predictions = clf.fit(x_train, x_test, y_train, y_test)
print(models)
1.退出当前虚拟环境(anaconda返回至base):
conda deactivate
2.查看当前环境中有哪些包
conda list
3.查看当前有哪些虚拟环境
conda info --envs
4.删除虚拟环境(py3.9是虚拟环境名)
conda remove -n py3.9 --all
5.删除内核(python3.9是环境名)
jupyter kernelspec remove python3.9