- Python中Sqlite的使用&ORM的使用&如何通过code初始化DB
lianxiang_biancheng
Pythonsqlitepythonsqluserinsertimport
1.python中如何sqlite下面的示例是通过拼接sql语句,来使用sqlite数据的。importsqlite3;delmain():dbpath="db\\test.db";try:conn=sqlite3.connect(self.dbpath);except:pass;#readsqlite3cur=self.conn.cursor();sql='Selectuser,pwd,sex,
- 讯飞智作 AI 配音技术浅析(一)
爱研究的小牛
AIGC—技术综述AIGC—概述AIGC—音频人工智能AIGC机器学习深度学习
一、核心技术讯飞智作AI配音技术作为科大讯飞在人工智能领域的重要成果,融合了多项前沿技术,为用户提供了高质量的语音合成服务。其核心技术主要涵盖以下几个方面:1.深度学习与神经网络讯飞智作AI配音技术以深度学习为核心驱动力,通过以下关键模型实现语音合成:Tacotron模型:该模型采用端到端的编码器-解码器架构,将输入文本直接转换为梅尔频谱(Mel-spectrogram),再通过声码器生成语音信号
- 超实用的Python深度学习教程 - 基于TensorFlow和Keras框架(含实例及完整代码)
AI_DL_CODE
人工智能python深度学习tensorflow
一、深度学习概述(一)深度学习的定义与发展历程深度学习在当今的科技领域占据着极为重要的地位。它是人工智能的一个重要分支,其定义为通过构建具有很多层的神经网络模型,让计算机自动从大量数据中学习复杂模式的一种技术。深度学习的发展历程可谓波澜壮阔,早期它源于对人工神经网络的研究,从简单的感知机模型开始。在发展初期,由于计算资源的限制以及数据量的不足等因素,发展较为缓慢。然而,随着计算机技术的飞速发展,尤
- Python OpenCV图像位运算详解
缤纷彩色
opencvpython计算机视觉
PythonOpenCV图像位运算详解图像处理是近年来非常热门的一项技术,其中图像二值化、特征提取、形态学处理等应用广泛。而位运算是图像处理中最重要的操作之一,其作用不仅可以对二进制数据进行处理,还可以在图像处理中实现一些特殊的效果。OpenCV库中提供了一系列对图像进行位运算的函数,其中bitwise_and函数有着非常广泛的应用。OpenCV-Python中的bitwise_and函数是一个二
- 探索高效嵌入式视觉应用:RK3588/RK3568/RK3566 Linux QT Opencv NPU YoloV5摄像头实时检测系统...
陆依嫣
探索高效嵌入式视觉应用:RK3588/RK3568/RK3566LinuxQTOpencvNPUYoloV5摄像头实时检测系统rk_yolov5.zip项目地址:https://gitcode.com/open-source-toolkit/f6845项目介绍在智能安防、机器人视觉等需要高性能图像处理和实时监控的应用场景中,RockchipRK3588、RK3568和RK3566处理器凭借其强大的
- OpenCV-Python图像位与运算bitwise_and函数详解
静谧星光c
opencvpython人工智能Python
OpenCV-Python图像位与运算bitwise_and函数详解图像处理中,位与运算是一种常用的操作,它可以对图像进行像素级别的逻辑与操作。在OpenCV-Python库中,提供了一个名为bitwise_and的函数,用于执行图像的位与运算。本文将详细介绍bitwise_and函数的用法,并提供相应的源代码示例。bitwise_and函数的语法如下:cv2.bitwise_and(src1,s
- 2025年美赛数学建模2025 MCM Problem A: Testing Time: The Constant Wear On Stairs A题 测试时间:楼梯上的持续磨损 代码解析
2025年数学建模美赛
2025年美赛MCM/ICM数学建模2025年数学建模美赛2025数学建模美赛A题2025楼梯上的持续磨损matlab代码
目录Python1.数据预处理与特征工程数据标准化与特征构建2.行进方向偏好分析深度神经网络(DNN)用于方向性分析3.多人同时使用分析卷积神经网络(CNN)用于磨损模式识别4.时间序列分析LSTM模型用于时间序列预测matlab代码Python我们将采用更多的机器学习和深度学习技术,例如图像处理、深度神经网络(DNN)、卷积神经网络(CNN)等,并结合不同的算法进行更深入的分析。1.数据预处理与
- Llama大型语言模型原理详解
摆烂大大王
llamallama语言模型人工智能
Llama大型语言模型是一种基于深度学习的自然语言处理模型,它在文本生成、问答、摘要等多种NLP任务中展现出强大的性能。本文将详细解析Llama模型的原理,包括其结构、训练过程以及工作机制,帮助读者深入理解这一先进的模型。一、模型结构Llama模型采用了一种基于Transformer的架构,这是一种由多个自注意力机制和前馈神经网络组成的深度神经网络结构。Transformer架构通过自注意力机制捕
- Rollup:专注类库和框架打包
时解之
JS专区RollupRollup打包大前端Javascript
文章内容输出来源:拉勾大前端高薪训练营-概述-也是一款ESModules打包器-也可以将项目中的一些散落的细小模块打包为整块代码-rollup与webpack作用类似-rollup更为小巧,仅仅是一款ESM打包器-rollup中并不支持类似HMR这种高级特性-rollup并不是要与webpack全面竞争-目标是提供一个充分利用ESM各项特性的高效打包器-快速上手-准备代码-src/message.
- PyTorch 快速入门
無量空所
深度学习机器学习pytorch开源
我们将通过一个简单的示例,快速了解如何使用PyTorch进行机器学习任务。PyTorch是一个开源的机器学习库,它提供了丰富的工具和库,帮助我们轻松地构建、训练和测试神经网络模型。以下是本教程的主要内容:一、数据处理PyTorch提供了两个基本的数据处理工具:torch.utils.data.DataLoader和torch.utils.data.Dataset。Dataset用于存储样本及其对应
- 初学者指南:快速入门Halcon图像处理与对象识别
Singe.Chen
图像处理人工智能halconc#计算机视觉
引言Halcon是一款功能强大的机器视觉和图像处理软件库,被广泛应用于工业自动化、医疗影像处理、机器人视觉等领域。对于刚开始接触机器视觉和图像处理的开发者来说,Halcon提供了丰富的工具和功能,可以帮助快速上手并构建高效的图像处理应用。本文将介绍Halcon的基本概念、安装和使用方法,并探讨其核心功能如图像处理和对象识别,提供一些简单的C#代码示例,帮助初学者快速入门。Halcon的基本概念Ha
- 零碎的知识点(十二):卷积神经网络CNN通道数的理解!
墨绿色的摆渡人
零碎知识点cnn深度学习神经网络
卷积神经网络CNN通道数的理解!通道数的核心概念解析1.通道数的本质2.单张灰度图的处理示例:3.批量输入的处理通道与批次的关系:4.RGB三通道输入的处理计算过程:示例:5.通道数的实际意义6.可视化理解(1)单通道输入(灰度图)的过滤器(2)三通道输入(RGB)的过滤器总结通道数的核心概念解析1.通道数的本质在卷积神经网络中,通道数(Channels)表示不同过滤器的数量。每个通道对应一个独立
- 神经网络|(七)概率论基础知识-贝叶斯公式
西猫雷婶
概率论人工智能概率论
【1】引言前序我们已经了解了一些基础知识。古典概型:有限个元素参与抽样,每个元素被抽样的概率相等。条件概率:在某条件已经达成的前提下,新事件发生的概率。实际计算的时候,应注意区分,如果是计算综合概率,比如A已经发生时,B发生的概率,其实计算的目标是P(AB)。条件概率公式的通用表达式为P(B|A)=P(AB)/P(A),乘法表达式为P(AB)=P(B|A)P(A)全概率公式:全概率公式综合了所有条
- 斯坦福吴恩达-深度学习和机器学习全套视频+课件!
Alexquyun
人工智能机器学习深度学习python
这些课程专为已有一定基础(基本的编程知识,熟悉Python、对机器学习有基本了解),想要尝试进入人工智能领域的计算机专业人士准备。介绍显示:“深度学习是科技业最热门的技能之一,本课程将帮你掌握深度学习。”学生将可以学习到深度学习的基础,学会构建神经网络,并用在包括吴恩达本人在内的多位业界顶尖专家指导下创建自己的机器学习项目。DeepLearningSpecialization对卷积神经网络(CNN
- Python从0到100(四十九):数据库设计及Django ORM使用
是Dream呀
python数据库django
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 一文大白话讲清楚webpack进阶——8——Module Federation
16年上任的CTO
webpackwebpack前端node.js模块联邦Federation
文章目录一文大白话讲清楚webpack进阶——8——ModuleFederation1.啥是ModuleFederation2.这里讲两个基础概念3.容器应用配置4.远程应用配置5.模块使用5.ModuleFederation好在哪里6.ModuleFederation实战一文大白话讲清楚webpack进阶——8——ModuleFederation1.啥是ModuleFederationModul
- 19c 密码文件报错:OPW-00029:
two_rain
oracleoracle
报错[oracle@localhostdbs]$orapwdfile=/u01/oracle/19.2.0/product/dbs/orapwtwocdbpassword='oracle'force=yOPW-00029:PasswordcomplexityfailedforSYSuser:Passwordmustcontainatleast8characters.原因:这是因为Oracle增强了
- 前馈神经网络——最基本的神经网络架构
纠结哥_Shrek
神经网络人工智能深度学习
前馈神经网络(FeedforwardNeuralNetwork,FNN)是一种基本的人工神经网络类型,其结构简单,广泛应用于各种机器学习任务。它由多个层次组成,包括输入层、隐藏层和输出层。FNN中的每一层与下一层的神经元之间是完全连接的,但不同层之间的神经元不相互连接。FNN以其数据流动方式来命名——前馈,意味着信息从输入层开始,经过一系列的隐藏层,最终输出结果,不存在任何循环或反馈连接。与递归神
- pytorch深度Q网络
纠结哥_Shrek
pytorch人工智能python
DQN引入了深度神经网络来近似Q函数,解决了传统Q-learning在处理高维状态空间时的瓶颈,尤其是在像Atari游戏这样的复杂环境中。DQN的核心思想是使用神经网络Q(s,a;θ)Q(s,a;\theta)Q(s,a;θ)来近似Q值函数,其中θ\thetaθ是神经网络的参数。DQN的关键创新包括:经验回放(ExperienceReplay):在强化学习中,当前的学习可能会依赖于最近的经验,容易
- 华为ipd项目管理流程_IPD产品开发与管理术语大全
weixin_39801991
华为ipd项目管理流程
IPD相关术语BB,buildingblock,组件BG,businessgroup,业务群BLM,businessleadershipmodel,业务领先模型BMT,businessmanagementteam,业务管理团队BP,businessplanning,业务计划CB,capabilitybaseline,能力基线CBB,commonbuildingblock,通用构建模块CDP,cha
- 灰色预测模型_预测模型——灰色模型
weixin_39548740
灰色预测模型
网上有许多大佬写的灰色预测模型,写的非常的棒,但是我个人感觉,在公式部分,许多大佬在写最小二乘法得出a,b的值的时候并不是那么细致,所以我写这一篇灰色模型既是详细介绍公式的由来,同时也是为后续我要写的组合模型,如灰色模型与神经网络的结合,灰色模型与马尔可夫链式模型的结合做一个铺垫,希望对大家有帮助。1,灰色系统介绍灰色系统是由华中科技大学的邓聚龙教授于80年代初创立,该系统作为新兴的横断学科,在短
- python 调用ffmpeg获取影片信息_python直接调用ffmpeg
weixin_39779528
python调用ffmpeg获取影片信息
ffmpeg是一个强大的开源命令行多媒体处理工具。关于ffmpeg的安装问题,可以看之前发的《ffmpeg的安装和简单使用》。ffmpeg如此强大,那么能不能用python调用并实现它的所有功能呢,答案自然是肯定的。要实现在python中调用ffmpeg,需要了解一下subprocess模块。简单来说,subprocess模块就相当于一个包壳的命令行,原则上可以在命令行中实现的事情都可以使用sub
- AI 大模型创业:如何利用商业优势?
AI天才研究院
大数据AI人工智能ChatGPTjavapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章:AI大模型概述1.1AI大模型的概念与演进AI大模型(Large-scaleArtificialIntelligenceModels)是指通过大规模数据训练得到的复杂神经网络模型。这些模型通常具有数十亿甚至千亿个参数,能够实现从自然语言处理到计算机视觉、语音识别等广泛领域的任务。AI大模型的概念起源于20世纪80年代,当时研究人员提出了深度学习(DeepLearning)这一概念。深度学习
- C#Halcon扇形/圆环缺陷检测(极坐标变换法)
浮生如梦_
c#计算机视觉视觉检测图像处理
扇形交互绘制与极坐标变换插件(加载图像—绘制扇形—极坐标变换—图像返回:运行效果)应用场景:缺陷检测,OCR识别,二维码识别,辅助定位等场景绘制扇形:原型算子create_drawing_object_circle_sector||create_drawing_object_ellipse_sector本次Demo小编用的是标准圆形绘制的扇形,目的是为了后面极坐标变换如果不涉及极坐标变换,可以采用
- AI人工智能代理工作流AI Agent WorkFlow:面向服务计算中的代理工作流管理
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:面向服务计算中的代理工作流管理关键词:人工智能,代理工作流,服务计算,自动执行,智能调度,协同处理,流程管理1.背景介绍1.1问题的由来随着互联网和云计算的快速发展,服务计算作为一种分布式计算模式,已经成为企业信息化建设的重要方向。在服务计算中,工作流技术被广泛应用于业务流程的建模、执行和管理。然而,传统的基于BPM(业务流程管理)的工作流管理
- [笔记] 如何在win上安装fbprophet库(Anaconda-Spyder)
WangMH_CHN
笔记
fbprophet库是Google开发的一个用于时间序列分析的库,该库的运行需要用到C++编译,因此最开始使用python安装的时候会出现很多问题。本文总结了整个安装过程,记录在此。 首先,先阐述初始配置情况:我习惯使用在Anaconda上使用Spyder来写代码,win10系统,系统基础的环境是python3.11。 但是fbprophet只支持py2.7、3.5~3.8,因此需要配置一
- Python 实现文本摘要功能
热爱技术的小胡
python
互联网时代信息爆炸式增长,人们面对越来越多的信息无法一一阅读,而文本自动摘要技术可以一定程度上缓解这个问题。摘要就是一篇文章的核心部分信息,文本自动摘要技术分抽取式摘要和生成式摘要,前者是在原文中挑选一定比例的句子拼凑成一个摘要,后者更接近人为的总结式简写一篇文章。目前越来越多的研究者使用深度神经网络来研究生成式摘要技术,但是难度也挺大,效果有限。本文的方法是使用基于启发式规则的算法实现了一个抽取
- 基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
宇哥预测优化代码学习
神经网络cnngru
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、引言二、模型结构三、数据预处理四、模型训练与评估五、实验结果与分析六、结论与展望2运行结果3参考文献4Python代码实现及数据1概述基于CNN-GRU(convolutionalneuralnetworks-gaterecurrentunit)神经网络的电
- leetcode——分割两个字符串得到一个回文字符串(java)
gentle_ice
leetcodejava算法
给你两个字符串a和b,它们长度相同。请你选择一个下标,将两个字符串都在相同的下标分割开。由a可以得到两个字符串:aprefix和asuffix,满足a=aprefix+asuffix,同理,由b可以得到两个字符串bprefix和bsuffix,满足b=bprefix+bsuffix。请你判断aprefix+bsuffix或者bprefix+asuffix能否构成回文串。当你将一个字符串s分割成sp
- Window系统下开发Qt——在图片上绘制图形
十年编程老舅
QT开发qtc++qt5开发语言ui
在图像处理程序中,经常需要在图片上绘制一些图像,用以提示用户或展示一些信息。例如,需要绘制一个矩形框,显示当前处理的图像是原图像的一部分。一般在Qt中,可以使用QLabel控件来显示图片。但是使用QLabel既显示图片又显示自己绘制的图形,会很不方便。可以自定义个类,继承自QLabel,并且重写QLabel的paintEvent方法,在此方法中,绘制自己的图形。QT文章推荐阅读:Qt开发必备技术栈
- 遍历dom 并且存储(将每一层的DOM元素存在数组中)
换个号韩国红果果
JavaScripthtml
数组从0开始!!
var a=[],i=0;
for(var j=0;j<30;j++){
a[j]=[];//数组里套数组,且第i层存储在第a[i]中
}
function walkDOM(n){
do{
if(n.nodeType!==3)//筛选去除#text类型
a[i].push(n);
//con
- Android+Jquery Mobile学习系列(9)-总结和代码分享
白糖_
JQuery Mobile
目录导航
经过一个多月的边学习边练手,学会了Android基于Web开发的毛皮,其实开发过程中用Android原生API不是很多,更多的是HTML/Javascript/Css。
个人觉得基于WebView的Jquery Mobile开发有以下优点:
1、对于刚从Java Web转型过来的同学非常适合,只要懂得HTML开发就可以上手做事。
2、jquerym
- impala参考资料
dayutianfei
impala
记录一些有用的Impala资料
1. 入门资料
>>官网翻译:
http://my.oschina.net/weiqingbin/blog?catalog=423691
2. 实用进阶
>>代码&架构分析:
Impala/Hive现状分析与前景展望:http
- JAVA 静态变量与非静态变量初始化顺序之新解
周凡杨
java静态非静态顺序
今天和同事争论一问题,关于静态变量与非静态变量的初始化顺序,谁先谁后,最终想整理出来!测试代码:
import java.util.Map;
public class T {
public static T t = new T();
private Map map = new HashMap();
public T(){
System.out.println(&quo
- 跳出iframe返回外层页面
g21121
iframe
在web开发过程中难免要用到iframe,但当连接超时或跳转到公共页面时就会出现超时页面显示在iframe中,这时我们就需要跳出这个iframe到达一个公共页面去。
首先跳转到一个中间页,这个页面用于判断是否在iframe中,在页面加载的过程中调用如下代码:
<script type="text/javascript">
//<!--
function
- JAVA多线程监听JMS、MQ队列
510888780
java多线程
背景:消息队列中有非常多的消息需要处理,并且监听器onMessage()方法中的业务逻辑也相对比较复杂,为了加快队列消息的读取、处理速度。可以通过加快读取速度和加快处理速度来考虑。因此从这两个方面都使用多线程来处理。对于消息处理的业务处理逻辑用线程池来做。对于加快消息监听读取速度可以使用1.使用多个监听器监听一个队列;2.使用一个监听器开启多线程监听。
对于上面提到的方法2使用一个监听器开启多线
- 第一个SpringMvc例子
布衣凌宇
spring mvc
第一步:导入需要的包;
第二步:配置web.xml文件
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi=
- 我的spring学习笔记15-容器扩展点之PropertyOverrideConfigurer
aijuans
Spring3
PropertyOverrideConfigurer类似于PropertyPlaceholderConfigurer,但是与后者相比,前者对于bean属性可以有缺省值或者根本没有值。也就是说如果properties文件中没有某个bean属性的内容,那么将使用上下文(配置的xml文件)中相应定义的值。如果properties文件中有bean属性的内容,那么就用properties文件中的值来代替上下
- 通过XSD验证XML
antlove
xmlschemaxsdvalidationSchemaFactory
1. XmlValidation.java
package xml.validation;
import java.io.InputStream;
import javax.xml.XMLConstants;
import javax.xml.transform.stream.StreamSource;
import javax.xml.validation.Schem
- 文本流与字符集
百合不是茶
PrintWrite()的使用字符集名字 别名获取
文本数据的输入输出;
输入;数据流,缓冲流
输出;介绍向文本打印格式化的输出PrintWrite();
package 文本流;
import java.io.FileNotFound
- ibatis模糊查询sqlmap-mapping-**.xml配置
bijian1013
ibatis
正常我们写ibatis的sqlmap-mapping-*.xml文件时,传入的参数都用##标识,如下所示:
<resultMap id="personInfo" class="com.bijian.study.dto.PersonDTO">
<res
- java jvm常用命令工具——jdb命令(The Java Debugger)
bijian1013
javajvmjdb
用来对core文件和正在运行的Java进程进行实时地调试,里面包含了丰富的命令帮助您进行调试,它的功能和Sun studio里面所带的dbx非常相似,但 jdb是专门用来针对Java应用程序的。
现在应该说日常的开发中很少用到JDB了,因为现在的IDE已经帮我们封装好了,如使用ECLI
- 【Spring框架二】Spring常用注解之Component、Repository、Service和Controller注解
bit1129
controller
在Spring常用注解第一步部分【Spring框架一】Spring常用注解之Autowired和Resource注解(http://bit1129.iteye.com/blog/2114084)中介绍了Autowired和Resource两个注解的功能,它们用于将依赖根据名称或者类型进行自动的注入,这简化了在XML中,依赖注入部分的XML的编写,但是UserDao和UserService两个bea
- cxf wsdl2java生成代码super出错,构造函数不匹配
bitray
super
由于过去对于soap协议的cxf接触的不是很多,所以遇到了也是迷糊了一会.后来经过查找资料才得以解决. 初始原因一般是由于jaxws2.2规范和jdk6及以上不兼容导致的.所以要强制降为jaxws2.1进行编译生成.我们需要少量的修改:
我们原来的代码
wsdl2java com.test.xxx -client http://.....
修改后的代
- 动态页面正文部分中文乱码排障一例
ronin47
公司网站一部分动态页面,早先使用apache+resin的架构运行,考虑到高并发访问下的响应性能问题,在前不久逐步开始用nginx替换掉了apache。 不过随后发现了一个问题,随意进入某一有分页的网页,第一页是正常的(因为静态化过了);点“下一页”,出来的页面两边正常,中间部分的标题、关键字等也正常,唯独每个标题下的正文无法正常显示。 因为有做过系统调整,所以第一反应就是新上
- java-54- 调整数组顺序使奇数位于偶数前面
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
import ljn.help.Helper;
public class OddBeforeEven {
/**
* Q 54 调整数组顺序使奇数位于偶数前面
* 输入一个整数数组,调整数组中数字的顺序,使得所有奇数位于数组的前半部分,所有偶数位于数组的后半
- 从100PV到1亿级PV网站架构演变
cfyme
网站架构
一个网站就像一个人,存在一个从小到大的过程。养一个网站和养一个人一样,不同时期需要不同的方法,不同的方法下有共同的原则。本文结合我自已14年网站人的经历记录一些架构演变中的体会。 1:积累是必不可少的
架构师不是一天练成的。
1999年,我作了一个个人主页,在学校内的虚拟空间,参加了一次主页大赛,几个DREAMWEAVER的页面,几个TABLE作布局,一个DB连接,几行PHP的代码嵌入在HTM
- [宇宙时代]宇宙时代的GIS是什么?
comsci
Gis
我们都知道一个事实,在行星内部的时候,因为地理信息的坐标都是相对固定的,所以我们获取一组GIS数据之后,就可以存储到硬盘中,长久使用。。。但是,请注意,这种经验在宇宙时代是不能够被继续使用的
宇宙是一个高维时空
- 详解create database命令
czmmiao
database
完整命令
CREATE DATABASE mynewdb USER SYS IDENTIFIED BY sys_password USER SYSTEM IDENTIFIED BY system_password LOGFILE GROUP 1 ('/u01/logs/my/redo01a.log','/u02/logs/m
- 几句不中听却不得不认可的话
datageek
1、人丑就该多读书。
2、你不快乐是因为:你可以像猪一样懒,却无法像只猪一样懒得心安理得。
3、如果你太在意别人的看法,那么你的生活将变成一件裤衩,别人放什么屁,你都得接着。
4、你的问题主要在于:读书不多而买书太多,读书太少又特爱思考,还他妈话痨。
5、与禽兽搏斗的三种结局:(1)、赢了,比禽兽还禽兽。(2)、输了,禽兽不如。(3)、平了,跟禽兽没两样。结论:选择正确的对手很重要。
6
- 1 14:00 PHP中的“syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM”错误
dcj3sjt126com
PHP
原文地址:http://www.kafka0102.com/2010/08/281.html
因为需要,今天晚些在本机使用PHP做些测试,PHP脚本依赖了一堆我也不清楚做什么用的库。结果一跑起来,就报出类似下面的错误:“Parse error: syntax error, unexpected T_PAAMAYIM_NEKUDOTAYIM in /home/kafka/test/
- xcode6 Auto layout and size classes
dcj3sjt126com
ios
官方GUI
https://developer.apple.com/library/ios/documentation/UserExperience/Conceptual/AutolayoutPG/Introduction/Introduction.html
iOS中使用自动布局(一)
http://www.cocoachina.com/ind
- 通过PreparedStatement批量执行sql语句【sql语句相同,值不同】
梦见x光
sql事务批量执行
比如说:我有一个List需要添加到数据库中,那么我该如何通过PreparedStatement来操作呢?
public void addCustomerByCommit(Connection conn , List<Customer> customerList)
{
String sql = "inseret into customer(id
- 程序员必知必会----linux常用命令之十【系统相关】
hanqunfeng
Linux常用命令
一.linux快捷键
Ctrl+C : 终止当前命令
Ctrl+S : 暂停屏幕输出
Ctrl+Q : 恢复屏幕输出
Ctrl+U : 删除当前行光标前的所有字符
Ctrl+Z : 挂起当前正在执行的进程
Ctrl+L : 清除终端屏幕,相当于clear
二.终端命令
clear : 清除终端屏幕
reset : 重置视窗,当屏幕编码混乱时使用
time com
- NGINX
IXHONG
nginx
pcre 编译安装 nginx
conf/vhost/test.conf
upstream admin {
server 127.0.0.1:8080;
}
server {
listen 80;
&
- 设计模式--工厂模式
kerryg
设计模式
工厂方式模式分为三种:
1、普通工厂模式:建立一个工厂类,对实现了同一个接口的一些类进行实例的创建。
2、多个工厂方法的模式:就是对普通工厂方法模式的改进,在普通工厂方法模式中,如果传递的字符串出错,则不能正确创建对象,而多个工厂方法模式就是提供多个工厂方法,分别创建对象。
3、静态工厂方法模式:就是将上面的多个工厂方法模式里的方法置为静态,
- Spring InitializingBean/init-method和DisposableBean/destroy-method
mx_xiehd
javaspringbeanxml
1.initializingBean/init-method
实现org.springframework.beans.factory.InitializingBean接口允许一个bean在它的所有必须属性被BeanFactory设置后,来执行初始化的工作,InitialzingBean仅仅指定了一个方法。
通常InitializingBean接口的使用是能够被避免的,(不鼓励使用,因为没有必要
- 解决Centos下vim粘贴内容格式混乱问题
qindongliang1922
centosvim
有时候,我们在向vim打开的一个xml,或者任意文件中,拷贝粘贴的代码时,格式莫名其毛的就混乱了,然后自己一个个再重新,把格式排列好,非常耗时,而且很不爽,那么有没有办法避免呢? 答案是肯定的,设置下缩进格式就可以了,非常简单: 在用户的根目录下 直接vi ~/.vimrc文件 然后将set pastetoggle=<F9> 写入这个文件中,保存退出,重新登录,
- netty大并发请求问题
tianzhihehe
netty
多线程并发使用同一个channel
java.nio.BufferOverflowException: null
at java.nio.HeapByteBuffer.put(HeapByteBuffer.java:183) ~[na:1.7.0_60-ea]
at java.nio.ByteBuffer.put(ByteBuffer.java:832) ~[na:1.7.0_60-ea]
- Hadoop NameNode单点问题解决方案之一 AvatarNode
wyz2009107220
NameNode
我们遇到的情况
Hadoop NameNode存在单点问题。这个问题会影响分布式平台24*7运行。先说说我们的情况吧。
我们的团队负责管理一个1200节点的集群(总大小12PB),目前是运行版本为Hadoop 0.20,transaction logs写入一个共享的NFS filer(注:NetApp NFS Filer)。
经常遇到需要中断服务的问题是给hadoop打补丁。 DataNod