画出神经网络结构图

学习资料:

  • 一个神经网络绘图包
  • latex 自带 Tikz 画图包 Example: Kalman Filter System Model.
  • 基于 Matplotlib 的Viznet
  • 在线生成卷积网络结构图:ConvNetDraw

使用 Viznet 画出神经网络结构图


'''

'''

import numpy as np
from viznet import connecta2a, node_sequence, NodeBrush, EdgeBrush, DynamicShow


def draw_feed_forward(ax, num_node_list):
    '''
    draw a feed forward neural network.

    Args:
        num_node_list (list): 每层节点数组成的列表
    '''
    num_hidden_layer = len(num_node_list) - 2  # 隐藏层数
    token_list = ['\sigma^z'] + \
        ['y^{(%s)}' % (i + 1) for i in range(num_hidden_layer)] + ['\psi']
    kind_list = ['nn.input'] + ['nn.hidden'] * num_hidden_layer + ['nn.output']
    radius_list = [0.3] + [0.2] * num_hidden_layer + [0.3]   # 半径大小
    y_list = - 1.5 * np.arange(len(num_node_list))  # 每一层节点所在的位置的纵轴坐标,全取负值说明网络是自顶而下的
    
    seq_list = []
    for n, kind, radius, y in zip(num_node_list, kind_list, radius_list, y_list):
        b = NodeBrush(kind, ax)
        seq_list.append(node_sequence(b, n, center=(0, y)))

    eb = EdgeBrush('-->', ax)
    for st, et in zip(seq_list[:-1], seq_list[1:]):
        connecta2a(st, et, eb)
    #for i, layer_nodes in enumerate(seq_list):
        #[node.text('$z_%i^{(%i)}$'%(j, i), 'center', fontsize=16) for j, node in enumerate(layer_nodes)]
    return seq_list


def real_bp():
    with DynamicShow((6, 6), '_feed_forward.png') as d:  # 隐藏坐标轴
        seq_list = draw_feed_forward(d.ax, num_node_list=[5, 4, 1])
        for i, layer_nodes in enumerate(seq_list):
            [node.text('$z_{%i}^{(%i)}$'%(j, i), 'center', fontsize=16) for j, node in enumerate(layer_nodes)]


if __name__ == '__main__':
    real_bp()

画出神经网络结构图_第1张图片

为了节省内存,最好将图片保存为 .svg 格式。

在线生成卷积网络结构图

这个操作起来十分简单,只需要输入如下卷积神经网络结构说明:

# Some example

input(28, 28, 1)
conv(24, 24, 8)
relu(24, 24, 8)
pool(12, 12, 8)
conv(10, 10, 16)
relu(10, 10, 16)
pool(4, 4, 16)
fullyconn(1, 1, 10)
softmax(1, 1, 10)

便可生成对应的网络结构,即:

画出神经网络结构图_第2张图片

转载于:https://www.cnblogs.com/q735613050/p/9699094.html

你可能感兴趣的:(人工智能,python,r语言)