- java竞赛优化输入输出效率
px不是xp
蓝桥准备java开发语言
在编程竞赛中,输入输出效率至关重要。Java的`Scanner`和`System.out.println`虽然简单,但在处理大规模数据时会严重拖慢速度。以下是**竞赛专用输入输出模板**及其原理详解,助你轻松应对高频I/O场景。---###⚡竞赛级输入输出模板(Java)importjava.io.*;importjava.util.*;publicclassMain{ publicstatic
- 快速复制A库表数据前10000行到B库
musk1212
数据库sqlmysql
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录应用场景一、存储过程,快速复制A库表数据前10000行到B库二、使用优化点说明结构优化性能调整错误处理增强安全改进调用示例应用场景表结构可预先存在或不存在mysql5.7快速复制A库表数据前10000行到B库一、存储过程,快速复制A库表数据前10000行到B库/*设置自定义分隔符以处理存储过程中的分号*/DELIMITER$$
- 使用rknn进行yolo11-pose部署
点PY
深度学习模型部署pytorch深度学习人工智能
文章目录概要生成ONNX生成RKNN实测效果概要使用RKNN进行YOLOv11Pose部署的必要性在于,RKNN能将YOLOv11Pose模型转化为适合Rockchip硬件平台(如RV1109、RV1126)执行的格式,充分利用其AI加速功能,显著提高推理速度和效率。此外,RKNN提供模型优化(如量化)功能,有助于减少计算资源消耗,提升实时处理能力,特别适合在嵌入式设备上进行高效、低功耗的姿态估计
- SQL面试题集:累计值与1000差值最小的记录
数星星的阿波罗
Sql能力通关sql算法数据库数据仓库大数据数据分析面试
一、题目描述司机累计收入首次接近目标值的订单定位,滴滴平台计划优化司机奖励策略的触发机制,需精准识别司机在接单过程中累计收入首次接近特定目标值1000元的订单节点。该分析用于动态调整奖励发放规则,提升司机接单积极性。样例数据假设表t_sales结构如下:driver_idorder_idincomeorder_time11012002025-02-1909:00:0011023002025-02-
- 深入解析JVM性能问题定位与优化
测试不打烊
性能测试jvm性能优化
JVM性能问题定位与优化详解:架构、内存、Linux命令与监控工具的全面解析引言Java虚拟机(JVM)是运行Java应用程序的核心组件,它管理内存、执行字节码,并提供垃圾回收机制等功能。然而,随着应用规模的增长,JVM的性能问题时常会成为系统瓶颈。为了有效定位和优化JVM性能问题,我们需要从JVM架构、内存管理、Linux系统命令,以及监控工具入手,对JVM的各类指标进行详尽的分析和优化。本文将
- 十大经典排序算法的C++实现与解析
金外飞176
算法算法数据结构c++
经典排序算法的C++实现与解析在计算机科学中,排序算法是数据处理和算法设计的基础。无论是处理大规模数据还是优化小规模数据的性能,排序算法都扮演着重要角色。本文将介绍10种经典排序算法,并提供它们的C++实现代码。这些算法包括冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序、堆排序、计数排序、基数排序和桶排序。1.冒泡排序(BubbleSort)原理冒泡排序是最简单的排序算法之一。它通过重
- 动态蛇形卷积(DySnakeConv)在YOLOv8检测头中的应用与优化-分割性能的提升【YOLOv8】
步入烟尘
YOLO动态蛇形卷积DySnakeConv
本专栏专为AI视觉领域的爱好者和从业者打造。涵盖分类、检测、分割、追踪等多项技术,带你从入门到精通!后续更有实战项目,助你轻松应对面试挑战!立即订阅,开启你的YOLOv8之旅!专栏订阅地址:https://blog.csdn.net/mrdeam/category_12804295.html文章目录动态蛇形卷积(DySnakeConv)在YOLOv8检测头中的应用与优化-分割性能的提升【YOLOv
- Java JVM性能优化与调优
卖血买老婆
Java专栏javajvm性能优化
优化Java应用的性能通常需要深入理解JVM(JavaVirtualMachine)的工作原理和运行机制,因为JVM直接决定了Java程序的运行时表现。以下是JVM性能优化与调优的要点和详细指导,涵盖常见问题、调优工具及策略。一、常见性能问题内存相关问题堆内存不足(OutOfMemoryError:Javaheapspace)元空间(Metaspace)不足频繁的垃圾回收导致长时间停顿内存泄漏(对
- webpack性能优化策略
雅望天堂i
webpack前端node.js
1.代码分割(CodeSplitting)通过代码分割,可以将代码拆分成多个较小的文件,实现按需加载,减少首屏加载时间。使用SplitChunksPlugin将公共代码提取到单独的chunk中,避免重复打包。config.optimization.splitChunks({chunks:'all',cacheGroups:{//第三方组件libs:{name:'chunk-libs',test:/
- 市场波动中的数据分析与策略优化
QQ3990385023
数据分析区块链人工智能
市场波动中的数据分析与策略优化在市场交易中,价格的波动往往受到多种因素影响,包括资金流向、经济数据、政策调整等。如何利用数据分析优化交易策略,提升市场适应能力,是投资者需要重点关注的问题。借助科学的分析方法,结合技术指标,可以更精准地识别趋势,提高交易稳定性。一、市场数据分析的核心要素1.价格趋势分析市场价格的变动通常会形成一定的趋势,例如上涨趋势、震荡趋势或下跌趋势。通过均线(MA)等技术指标,
- 【Go语言快速上手】第二部分:Go语言进阶之测试与性能优化
卜及中
Golanggolang性能优化log4j
文章目录前言:测试和性能优化一、编写单元测试和基准测试1.1单元测试1.1.1示例:编写单元测试1.2基准测试1.2.1示例:编写基准测试二、使用pprof进行性能分析2.1启用pprof2.1.1示例:启用pprof2.2使用pprof工具分析性能2.2.1示例:生成CPU性能报告2.2.2示例:生成内存使用报告2.3分析报告三、代码优化技巧3.1减少内存分配3.1.1示例:重用切片3.2避免锁
- 大模型如何改变教育?典型应用场景的探究与展望!
AGI大模型学习
大模型应用人工智能AI产品经理llama大模型AI大模型教程
目前,大模型在教育领域的应用主要体现在个性化学习助手、智能问答系统、内容生成与创作辅助、智能写作评估、跨语言学习支持、数学解题辅助等几个方面。大模型技术在教育领域凭借卓越的数据处理能力和深度学习技术,极大推动了教育质量的提升与教育公平的实现。分级分类的教育数据助力大模型发展在构建与优化大模型的过程中,教育数据能够帮助我们更精准地理解教育现象,更有质量地辅助教学。教育数据涵盖广泛,包括但不限于学生的
- 动态蛇形卷积在YOLOv8中的探索与实践:提高目标识别与定位精度
向哆哆
YOLO目标跟踪深度学习YOLOv8
文章目录动态蛇形卷积在YOLOv8中的探索与实践:提高目标识别与定位精度1.什么是动态蛇形卷积?2.YOLOv8的卷积改进2.1常规卷积与动态蛇形卷积的区别2.2动态蛇形卷积的实现原理2.3YOLOv8中集成动态蛇形卷积3.手把手实现动态蛇形卷积3.1安装依赖3.2设计动态蛇形卷积层3.3集成到YOLOv8中3.4训练与优化4.动态蛇形卷积的进一步优化4.1蛇形路径的动态学习4.1.1学习动态路径
- RUST练习生如何在生产环境构建万亿流量|得物技术
后端rust
一、引言在《得物新一代可观测性架构:海量数据下的存算分离设计与实践》一文中,我们探讨了存算分离架构如何通过解耦计算与存储资源,显著降低存储成本并提升系统扩展性。然而,仅优化存储成本不足以支撑高效可观测性系统的全局目标。在生产环境中,计算层作为可观测性体系的核心模块,需在处理日益复杂和动态的大流量数据时,保持高性能、强稳定性与优异的资源利用效率。在得物的可观测性计算层中,Java凭借其成熟的生态系统
- HarmonyOS应用开发最佳实践
harmonyos
课程简介本课程是【HarmonyOSTechTalk】的第9课。本次交流紧紧围绕HarmonyOS应用开发。重点探讨常见的功耗问题及其最佳实践方案。省电模式是降低能耗的关键策略,通过优化系统资源分配等方式减少电量消耗。深色模式不仅能提升视觉舒适度,还对节能有积极作用。LTPO可变帧率技术则在保障应用流畅性的同时进一步优化功耗。而后台任务的合理开发与管理,决定着应用在后台运行时的资源占用与续航表现。
- LLM的分布式部署:AI的云端革命
AI天才研究院
AI大模型企业级应用开发实战Python实战DeepSeekR1&大数据AI人工智能大模型javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
《LLM的分布式部署:AI的云端革命》关键词分布式部署语言模型云端计算资源管理性能优化安全性摘要本文将深入探讨大型语言模型(LLM)的分布式部署,分析其技术背景、架构设计、资源管理、性能优化以及安全性等方面。通过对LLM分布式部署的关键技术进行详细介绍,我们旨在为读者提供一个全面、系统的理解,以及展望未来LLM分布式部署的发展趋势。目录大纲第一部分:分布式部署概述第1章:分布式系统基础第2章:LL
- DeepSeek与ChatGPT:AI语言模型的全面对决
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3chatgpt人工智能语言模型
DeepSeek(深度求索)与ChatGPT作为当前备受关注的两大AI语言模型,在技术架构、应用场景和性能表现上各有特色。以下从六大维度展开全面对比,为不同需求场景提供选择参考:一、核心技术对比维度DeepSeekChatGPT架构设计混合专家系统(MoE)+自研深度优化架构Transformer架构(GPT-3.5/4系列)训练策略万亿token中文语料预训练+领域强化学习多语言混合训练+RLH
- DeepSeek和ChatGPT的全面对比
陈皮话梅糖@
AI编程
一、模型基础架构对比(2023技术版本)维度DeepSeekChatGPT模型家族LLAMA架构改进GPT-4优化版本参数量级开放7B/35B/120B闭源175B+位置编码RoPE+NTK扩展ALiBiAttention机制FlashAttention-3FlashAttention-2激活函数SwiGLUProGeGLU训练框架DeepSpeed+Megatron定制内部框架上下文窗口32k(
- 基于 Spring Boot 的社区居民健康管理系统部署说明书
小星袁
毕业设计原文springboot后端java
目录1系统概述2准备资料3系统安装与部署3.1数据库部署3.1.1MySQL的部署3.1.2Navicat的部署3.2服务器部署3.3客户端部署4系统配置与优化5其他基于SpringBoot的社区居民健康管理系统部署说明书1系统概述本系统主要运用了SpringBoot框架,前端页面的设计主要依托Vue框架来构建,实现丰富且交互性强的用户界面,后台管理功能则采用SpringBoot框架与MySQL数
- 实战优化登录系统:实现是否支持多设备、最大设备数等可配置化
wujiada001
#实战优化java
使用场景:有些用户可能需要在多台设备中登录同一个账户,同时希望设置可以登录的设备数。举个例子:公司的账户只允许五个员工登录系统。实现方案:利用redis的Zset有序集合,使用登录的当前时间戳作为分数,后续达到最大设备数之后,删除分数最小的,也就是登录时间最早的设备,实现强制退出。登录时需要保存token配置信息读取yaml文件#用户登陆配置user-login:#token到期时间单位秒toke
- 中国光伏储能产业2025 - 2030:现状、挑战与前景展望
CodeJourney.
数据库人工智能算法架构python
在全球积极应对气候变化、大力推动能源转型的大背景下,中国光伏储能产业作为新能源领域的关键力量,正处于快速发展的关键时期。2025-2030年,这一产业面临着诸多机遇与挑战,其发展态势不仅关乎中国能源结构的优化和可持续发展目标的实现,也对全球清洁能源转型产生着深远影响。本文将依据Deepseek的预测,深入剖析这一时期中国光伏储能产业的现状、核心驱动力、挑战与风险以及前景展望。一、2025年:产业蓬
- 前端性能优化——如何提高页面加载速度?
忘川...
前端性能优化html
1.将样式表放在头部首先说明一下,将样式表放在头部对于实际页面加载的时间并不能造成太大影响,但是这会减少页面首屏出现的时间,使页面内容逐步呈现,改善用户体验,防止“白屏”。我们总是希望页面能够尽快显示内容,为用户提供可视化的回馈,这对网速慢的用户来说是很重要的。将样式表放在文档底部会阻止浏览器中的内容逐步出现。为了避免当样式变化时重绘页面元素,浏览器会阻塞内容逐步呈现,造成“白屏”。这源自浏览器的
- 部署前端项目2
augenstern416
前端
前端项目的部署是将开发完成的前端代码发布到服务器或云平台,使其能够通过互联网访问。以下是前端项目部署的常见步骤和工具:1.准备工作在部署之前,确保项目已经完成以下步骤:代码优化:压缩JavaScript、CSS和图片文件,减少文件体积。环境配置:区分开发环境和生产环境(如API地址、环境变量等)。测试:确保项目在本地测试通过,没有明显Bug。2.部署流程1.构建项目大多数前端项目(如React、V
- java进阶篇--生产环境如何排查bug和优化 JVM?
爱分享的淘金达人
Java源码剖析(30讲)jvm优化jvm调优优化jvm生产环境优化jvm生产环境jvm优化
通过前面几个课时的学习,相信你对JVM的理论及实践等相关知识有了一个大体的印象。而本课时将重点讲解JVM的排查与优化,这样就会对JVM的知识点有一个完整的认识,从而可以更好地应用于实际工作或者面试了。我们本课时的面试题是,生产环境如何排查问题?回答:如果是在生产环境中直接排查JVM的话,最简单的做法就是使用JDK自带的6个非常实用的命令行工具来排查。它们分别是:jps、jstat、jinfo、jm
- 03.Docker 命令帮助
转身後 默落
Dockerdockereureka容器
Docker命令帮助Docker命令帮助1.docker命令帮助2.docker优化Docker命令帮助docker命令是最常使用的docker客户端命令,其后面可以加不同的参数以实现不同的功能。1.docker命令帮助官方文档:https://docs.docker.com/reference/cli/docker/docker[OPTIONS]COMMANDCOMMAND分为:Manageme
- AI编剧系统深度解析:从算法架构到影视工业化应用实战
Coderabo
DeepSeekR1模型企业级应用人工智能算法
媒体娱乐行业革命:AI编剧创意辅助系统架构解析与实战应用一、行业背景与技术架构在流媒体内容需求激增的当下,传统编剧模式面临产能瓶颈。AI编剧创意辅助系统通过自然语言处理(NLP)、生成对抗网络(GAN)和知识图谱技术,构建了包含剧本生成、情节优化、角色塑造等模块的智能创作平台。核心架构分为:知识图谱层:整合影视剧本数据库(IMSDb)、维基百科等结构化数据NLP处理层:基于Transformer的
- GCC预处理器探索:利用-E选项和CMake优化代码构建
泡沫o0
C++项目设计:理论实践与创新C/C++编程世界:探索C/C++的奥妙构建系统全解:从CMakelinuxqt开发语言c++c语言嵌入式c++11
目录标题第一章:宏展开的基本概念与GCC预处理器1.1宏定义与展开1.2GCC的预处理器1.3使用GCC展开宏的示例第二章:在CMake中配置预处理命令2.1使用`add_custom_command`和`add_custom_target`2.1.1`add_custom_command`2.1.2`add_custom_target`2.2实际应用第三章:预处理的高级应用和优化策略3.1条件编
- 【面试准备】运维工程师
C.尚水.Y
我的面试准备面试运维职场和发展
面试目标:岗位职责分析:1、IT相关设备、环境、运行状况的采购、安装、维护、保养、检查、IT资产管理;2、防火墙、路由器、网络交换机、VPN、服务器等性能优化,配置修改;3、光纤和ADSL线路的监控、测试、报障;4、ERP账号、文件服务器等软件账号的开放与权限管理、维护;5、邮箱OA服务器、文件服务器、ERP数据库服务器的日常管理、维护;6、公司网络工程的规划、项目实施、技术支持;—对这个运维工程
- 【分布式理论16】分布式调度2:资源划分和调度策略
roman_日积跬步-终至千里
分布式架构分布式
文章目录一、资源划分:Linux容器的应用1.LXC的Namespace机制:资源隔离2.LXC的CGroup机制:资源管理二、任务与资源如何匹配1.任务队列与资源池2.资源调度策略在分布式系统中,资源的有效分配和调度是确保计算任务高效执行的关键。为了能够合理地利用系统资源并优化计算任务的执行,资源划分和调度策略显得尤为重要。本节将从Linux容器资源划分、资源池与任务队列的匹配,以及不同的调度策
- 在 DeepSeek 驱动的编程变革中抓住机遇并脱颖而出
智想天开
AI技术人工智能deeplearning
公众号地址:在DeepSeek驱动的编程变革中抓住机遇并脱颖而出更多内容请关注公众号:智想天开前言在DeepSeek引领的新一轮AI技术革新中,程序员们正面临着前所未有的挑战。随着DeepSeek等人工智能工具的迅猛发展,编程领域正在发生深刻变革。这些先进的工具不仅能够自动化完成繁重的代码生成和调试任务,还能够根据大量数据提供优化建议,改变了传统编程的工作流程。虽然这些技术为提高工作效率和解放开发
- 面向对象面向过程
3213213333332132
java
面向对象:把要完成的一件事,通过对象间的协作实现。
面向过程:把要完成的一件事,通过循序依次调用各个模块实现。
我把大象装进冰箱这件事为例,用面向对象和面向过程实现,都是用java代码完成。
1、面向对象
package bigDemo.ObjectOriented;
/**
* 大象类
*
* @Description
* @author FuJian
- Java Hotspot: Remove the Permanent Generation
bookjovi
HotSpot
openjdk上关于hotspot将移除永久带的描述非常详细,http://openjdk.java.net/jeps/122
JEP 122: Remove the Permanent Generation
Author Jon Masamitsu
Organization Oracle
Created 2010/8/15
Updated 2011/
- 正则表达式向前查找向后查找,环绕或零宽断言
dcj3sjt126com
正则表达式
向前查找和向后查找
1. 向前查找:根据要匹配的字符序列后面存在一个特定的字符序列(肯定式向前查找)或不存在一个特定的序列(否定式向前查找)来决定是否匹配。.NET将向前查找称之为零宽度向前查找断言。
对于向前查找,出现在指定项之后的字符序列不会被正则表达式引擎返回。
2. 向后查找:一个要匹配的字符序列前面有或者没有指定的
- BaseDao
171815164
seda
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
public class BaseDao {
public Conn
- Ant标签详解--Java命令
g21121
Java命令
这一篇主要介绍与java相关标签的使用 终于开始重头戏了,Java部分是我们关注的重点也是项目中用处最多的部分。
1
- [简单]代码片段_电梯数字排列
53873039oycg
代码
今天看电梯数字排列是9 18 26这样呈倒N排列的,写了个类似的打印例子,如下:
import java.util.Arrays;
public class 电梯数字排列_S3_Test {
public static void main(S
- Hessian原理
云端月影
hessian原理
Hessian 原理分析
一. 远程通讯协议的基本原理
网络通信需要做的就是将流从一台计算机传输到另外一台计算机,基于传输协议和网络 IO 来实现,其中传输协议比较出名的有 http 、 tcp 、 udp 等等, http 、 tcp 、 udp 都是在基于 Socket 概念上为某类应用场景而扩展出的传输协
- 区分Activity的四种加载模式----以及Intent的setFlags
aijuans
android
在多Activity开发中,有可能是自己应用之间的Activity跳转,或者夹带其他应用的可复用Activity。可能会希望跳转到原来某个Activity实例,而不是产生大量重复的Activity。
这需要为Activity配置特定的加载模式,而不是使用默认的加载模式。 加载模式分类及在哪里配置
Activity有四种加载模式:
standard
singleTop
- hibernate几个核心API及其查询分析
antonyup_2006
html.netHibernatexml配置管理
(一) org.hibernate.cfg.Configuration类
读取配置文件并创建唯一的SessionFactory对象.(一般,程序初始化hibernate时创建.)
Configuration co
- PL/SQL的流程控制
百合不是茶
oraclePL/SQL编程循环控制
PL/SQL也是一门高级语言,所以流程控制是必须要有的,oracle数据库的pl/sql比sqlserver数据库要难,很多pl/sql中有的sqlserver里面没有
流程控制;
分支语句 if 条件 then 结果 else 结果 end if ;
条件语句 case when 条件 then 结果;
循环语句 loop
- 强大的Mockito测试框架
bijian1013
mockito单元测试
一.自动生成Mock类 在需要Mock的属性上标记@Mock注解,然后@RunWith中配置Mockito的TestRunner或者在setUp()方法中显示调用MockitoAnnotations.initMocks(this);生成Mock类即可。二.自动注入Mock类到被测试类 &nbs
- 精通Oracle10编程SQL(11)开发子程序
bijian1013
oracle数据库plsql
/*
*开发子程序
*/
--子程序目是指被命名的PL/SQL块,这种块可以带有参数,可以在不同应用程序中多次调用
--PL/SQL有两种类型的子程序:过程和函数
--开发过程
--建立过程:不带任何参数
CREATE OR REPLACE PROCEDURE out_time
IS
BEGIN
DBMS_OUTPUT.put_line(systimestamp);
E
- 【EhCache一】EhCache版Hello World
bit1129
Hello world
本篇是EhCache系列的第一篇,总体介绍使用EhCache缓存进行CRUD的API的基本使用,更细节的内容包括EhCache源代码和设计、实现原理在接下来的文章中进行介绍
环境准备
1.新建Maven项目
2.添加EhCache的Maven依赖
<dependency>
<groupId>ne
- 学习EJB3基础知识笔记
白糖_
beanHibernatejbosswebserviceejb
最近项目进入系统测试阶段,全赖袁大虾领导有力,保持一周零bug记录,这也让自己腾出不少时间补充知识。花了两天时间把“传智播客EJB3.0”看完了,EJB基本的知识也有些了解,在这记录下EJB的部分知识,以供自己以后复习使用。
EJB是sun的服务器端组件模型,最大的用处是部署分布式应用程序。EJB (Enterprise JavaBean)是J2EE的一部分,定义了一个用于开发基
- angular.bootstrap
boyitech
AngularJSAngularJS APIangular中文api
angular.bootstrap
描述:
手动初始化angular。
这个函数会自动检测创建的module有没有被加载多次,如果有则会在浏览器的控制台打出警告日志,并且不会再次加载。这样可以避免在程序运行过程中许多奇怪的问题发生。
使用方法: angular .
- java-谷歌面试题-给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数
bylijinnan
java
public class SearchInShiftedArray {
/**
* 题目:给定一个固定长度的数组,将递增整数序列写入这个数组。当写到数组尾部时,返回数组开始重新写,并覆盖先前写过的数。
* 请在这个特殊数组中找出给定的整数。
* 解答:
* 其实就是“旋转数组”。旋转数组的最小元素见http://bylijinnan.iteye.com/bl
- 天使还是魔鬼?都是我们制造
ducklsl
生活教育情感
----------------------------剧透请原谅,有兴趣的朋友可以自己看看电影,互相讨论哦!!!
从厦门回来的动车上,无意中瞟到了书中推荐的几部关于儿童的电影。当然,这几部电影可能会另大家失望,并不是类似小鬼当家的电影,而是关于“坏小孩”的电影!
自己挑了两部先看了看,但是发现看完之后,心里久久不能平
- [机器智能与生物]研究生物智能的问题
comsci
生物
我想,人的神经网络和苍蝇的神经网络,并没有本质的区别...就是大规模拓扑系统和中小规模拓扑分析的区别....
但是,如果去研究活体人类的神经网络和脑系统,可能会受到一些法律和道德方面的限制,而且研究结果也不一定可靠,那么希望从事生物神经网络研究的朋友,不如把
- 获取Android Device的信息
dai_lm
android
String phoneInfo = "PRODUCT: " + android.os.Build.PRODUCT;
phoneInfo += ", CPU_ABI: " + android.os.Build.CPU_ABI;
phoneInfo += ", TAGS: " + android.os.Build.TAGS;
ph
- 最佳字符串匹配算法(Damerau-Levenshtein距离算法)的Java实现
datamachine
java算法字符串匹配
原文:http://www.javacodegeeks.com/2013/11/java-implementation-of-optimal-string-alignment.html------------------------------------------------------------------------------------------------------------
- 小学5年级英语单词背诵第一课
dcj3sjt126com
englishword
long 长的
show 给...看,出示
mouth 口,嘴
write 写
use 用,使用
take 拿,带来
hand 手
clever 聪明的
often 经常
wash 洗
slow 慢的
house 房子
water 水
clean 清洁的
supper 晚餐
out 在外
face 脸,
- macvim的使用实战
dcj3sjt126com
macvim
macvim用的是mac里面的vim, 只不过是一个GUI的APP, 相当于一个壳
1. 下载macvim
https://code.google.com/p/macvim/
2. 了解macvim
:h vim的使用帮助信息
:h macvim
- java二分法查找
蕃薯耀
java二分法查找二分法java二分法
java二分法查找
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月23日 11:40:03 星期二
http:/
- Spring Cache注解+Memcached
hanqunfeng
springmemcached
Spring3.1 Cache注解
依赖jar包:
<!-- simple-spring-memcached -->
<dependency>
<groupId>com.google.code.simple-spring-memcached</groupId>
<artifactId>simple-s
- apache commons io包快速入门
jackyrong
apache commons
原文参考
http://www.javacodegeeks.com/2014/10/apache-commons-io-tutorial.html
Apache Commons IO 包绝对是好东西,地址在http://commons.apache.org/proper/commons-io/,下面用例子分别介绍:
1) 工具类
2
- 如何学习编程
lampcy
java编程C++c
首先,我想说一下学习思想.学编程其实跟网络游戏有着类似的效果.开始的时候,你会对那些代码,函数等产生很大的兴趣,尤其是刚接触编程的人,刚学习第一种语言的人.可是,当你一步步深入的时候,你会发现你没有了以前那种斗志.就好象你在玩韩国泡菜网游似的,玩到一定程度,每天就是练级练级,完全是一个想冲到高级别的意志力在支持着你.而学编程就更难了,学了两个月后,总是觉得你好象全都学会了,却又什么都做不了,又没有
- 架构师之spring-----spring3.0新特性的bean加载控制@DependsOn和@Lazy
nannan408
Spring3
1.前言。
如题。
2.描述。
@DependsOn用于强制初始化其他Bean。可以修饰Bean类或方法,使用该Annotation时可以指定一个字符串数组作为参数,每个数组元素对应于一个强制初始化的Bean。
@DependsOn({"steelAxe","abc"})
@Comp
- Spring4+quartz2的配置和代码方式调度
Everyday都不同
代码配置spring4quartz2.x定时任务
前言:这些天简直被quartz虐哭。。因为quartz 2.x版本相比quartz1.x版本的API改动太多,所以,只好自己去查阅底层API……
quartz定时任务必须搞清楚几个概念:
JobDetail——处理类
Trigger——触发器,指定触发时间,必须要有JobDetail属性,即触发对象
Scheduler——调度器,组织处理类和触发器,配置方式一般只需指定触发
- Hibernate入门
tntxia
Hibernate
前言
使用面向对象的语言和关系型的数据库,开发起来很繁琐,费时。由于现在流行的数据库都不面向对象。Hibernate 是一个Java的ORM(Object/Relational Mapping)解决方案。
Hibernte不仅关心把Java对象对应到数据库的表中,而且提供了请求和检索的方法。简化了手工进行JDBC操作的流程。
如
- Math类
xiaoxing598
Math
一、Java中的数字(Math)类是final类,不可继承。
1、常数 PI:double圆周率 E:double自然对数
2、截取(注意方法的返回类型) double ceil(double d) 返回不小于d的最小整数 double floor(double d) 返回不大于d的整最大数 int round(float f) 返回四舍五入后的整数 long round