人工智能(5)

机器学习属于人工智能的分支之一,且处于核心地位。顾名思义,机器学习的研究旨在让计算机学会学习,能够模拟人类的学习行为,建立学习能力,实现识别和判断。机器学习使用算法来解析海量数据,从中找出规律,并完成学习,用学习出来的思维模型对真实事件做出决策和预测。这种方式也称为“训练”。

深度学习是机器学习的一种实现技术,在2006年被Hinton等人首次提出。深度学习遵循仿生学,源自神经元以及神经网络的研究,能够模仿人类神经网络传输和接收信号的方式,进而达到学习人类的思维方式的目的。

人工智能(5)_第1张图片

机器学习分类

在机器学习或者人工智能领域,有几种主要的学习方式:监督式学习、无监督式学习、强化学习。监督式学习主要用于回归和分类,无监督式学习主要用于聚类。

1. 监督式学习

监督式学习[3]是从有标签训练集中学到或建立一个模式,并根据此模式推断新的实例。训练集由输入数据(通常是向量)和预期输出标签所组成。当函数的输出是一个连续的值时称为回归分析,当预测的内容是一个离散标签时,称为分类。

2. 无监督式学习

无监督式学习[4]是另外一种比较常用的学习方法,与监督式学习不同的是,它没有准确的样本数据进行训练。比如我们去看画展,如果我们对艺术一无所知,是很难直接区分出艺术品的流派的。但当我们浏览完所有的画作,则可以有一个大概的分类,即使不知道这些分类对应的准确绘画风格是什么,也可以把观看过的某两个作品归为一个类型。这就是无监督式学习的流程,并不需要人力来输入标签,适用于聚类,把相似的东西聚在一起,而无须考虑这一类到底是什么。

3. 强化学习

强化学习[5]是另外一种重要的机器学习方法,强调如何基于环境而行动,以取得最大化的预期利益。在这种模式下,输入的样本数据也会对模型进行反馈,不过不像监督式学习那样直接告诉正确的分类,强化学习的反馈仅仅检查模型的对错,模型会在接收到类似于奖励或者惩罚的刺激后,逐步做出调整。

神经网络

在过去的 10 年里,性能最好的人工智能系统——比如智能手机上的语音识别器或谷歌最新的自动翻译器——都是由一种称为「深度学习」的技术产生的。

深度学习实际上是一种称为神经网络的人工智能方法的新名称,70 多年来一直时兴时衰。神经网络最初是由 Warren McCullough 和 Walter Pitts 于 1944 年提出的,这两位芝加哥大学的研究人员于 1952 年搬到麻省理工学院,他们有时被称为第一个认知科学系的创始成员。

神经网络是神经科学和计算机科学的一个主要研究领域,直到 1969 年,根据计算机科学的传说,他们被麻省理工学院的数学家 Marvin Minsky 和 Seymour Papert 「扼杀」了。一年后,Marvin Minsky 和 Seymour Papert 成为麻省理工学院新的人工智能实验室的联合主任。

 

你可能感兴趣的:(人工智能)