YOLOV4-模型训练和代码-pytorch

训练超参

batch,subvision,burn in,学习率等等
YOLOV4-模型训练和代码-pytorch_第1张图片

build target

从Ground Truth到target的过程
YOLOV4-模型训练和代码-pytorch_第2张图片
YOLOV4-模型训练和代码-pytorch_第3张图片YOLOV4-模型训练和代码-pytorch_第4张图片
YOLOV4-模型训练和代码-pytorch_第5张图片

损失函数

位置回归损失,物体自信度损失(正样本和负样本),类别交叉熵损失

import cv2  
from random import shuffle
import numpy as np
import torch
import torch.nn as nn
import math
import torch.nn.functional as F
from matplotlib.colors import rgb_to_hsv, hsv_to_rgb
from PIL import Image
from utils.utils import bbox_iou, merge_bboxes

def iou(_box_a, _box_b):
    b1_x1, b1_x2 = _box_a[:, 0] - _box_a[:, 2] / 2, _box_a[:, 0] + _box_a[:, 2] / 2
    b1_y1, b1_y2 = _box_a[:, 1] - _box_a[:, 3] / 2, _box_a[:, 1] + _box_a[:, 3] / 2
    b2_x1, b2_x2 = _box_b[:, 0] - _box_b[:, 2] / 2, _box_b[:, 0] + _box_b[:, 2] / 2
    b2_y1, b2_y2 = _box_b[:, 1] - _box_b[:, 3] / 2, _box_b[:, 1] + _box_b[:, 3] / 2
    box_a = torch.zeros_like(_box_a)
    box_b = torch.zeros_like(_box_b)
    box_a[:, 0], box_a[:, 1], box_a[:, 2], box_a[:, 3] = b1_x1, b1_y1, b1_x2, b1_y2
    box_b[:, 0], box_b[:, 1], box_b[:, 2], box_b[:, 3] = b2_x1, b2_y1, b2_x2, b2_y2
    A = box_a.size(0)
    B = box_b.size(0)
    max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
                       box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
    min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
                       box_b[:, :2].unsqueeze(0).expand(A, B, 2))
    inter = torch.clamp((max_xy - min_xy), min=0)

    inter = inter[:, :, 0] * inter[:, :, 1]
    # 计算先验框和真实框各自的面积
    area_a = ((box_a[:, 2]-box_a[:, 0]) *
              (box_a[:, 3]-box_a[:, 1])).unsqueeze(1).expand_as(inter)  # [A,B]
    area_b = ((box_b[:, 2]-box_b[:, 0]) *
              (box_b[:, 3]-box_b[:, 1])).unsqueeze(0).expand_as(inter)  # [A,B]
    # 求IOU
    union = area_a + area_b - inter
    return inter / union  # [A,B]
#---------------------------------------------------#
#   平滑标签
#---------------------------------------------------#
def smooth_labels(y_true, label_smoothing,num_classes):
    return y_true * (1.0 - label_smoothing) + label_smoothing / num_classes

def box_ciou(b1, b2):
    """
    输入为:
    ----------
    b1: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh
    b2: tensor, shape=(batch, feat_w, feat_h, anchor_num, 4), xywh

    返回为:
    -------
    ciou: tensor, shape=(batch, feat_w, feat_h, anchor_num, 1)
    """
    # 求出预测框左上角右下角
    b1_xy = b1[..., :2]
    b1_wh = b1[..., 2:4]
    b1_wh_half = b1_wh/2.
    b1_mins = b1_xy - b1_wh_half
    b1_maxes = b1_xy + b1_wh_half
    # 求出真实框左上角右下角
    b2_xy = b2[..., :2]
    b2_wh = b2[..., 2:4]
    b2_wh_half = b2_wh/2.
    b2_mins = b2_xy - b2_wh_half
    b2_maxes = b2_xy + b2_wh_half

    # 求真实框和预测框所有的iou
    intersect_mins = torch.max(b1_mins, b2_mins)
    intersect_maxes = torch.min(b1_maxes, b2_maxes)
    intersect_wh = torch.max(intersect_maxes - intersect_mins, torch.zeros_like(intersect_maxes))
    intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
    b1_area = b1_wh[..., 0] * b1_wh[..., 1]
    b2_area = b2_wh[..., 0] * b2_wh[..., 1]
    union_area = b1_area + b2_area - intersect_area
    iou = intersect_area / torch.clamp(union_area,min = 1e-6)

    # 计算中心的差距
    center_distance = torch.sum(torch.pow((b1_xy - b2_xy), 2), axis=-1)
    
    # 找到包裹两个框的最小框的左上角和右下角
    enclose_mins = torch.min(b1_mins, b2_mins)
    enclose_maxes = torch.max(b1_maxes, b2_maxes)
    enclose_wh = torch.max(enclose_maxes - enclose_mins, torch.zeros_like(intersect_maxes))
    # 计算对角线距离
    enclose_diagonal = torch.sum(torch.pow(enclose_wh,2), axis=-1)
    ciou = iou - 1.0 * (center_distance) / torch.clamp(enclose_diagonal,min = 1e-6)
    
    v = (4 / (math.pi ** 2)) * torch.pow((torch.atan(b1_wh[..., 0]/torch.clamp(b1_wh[..., 1],min = 1e-6)) - torch.atan(b2_wh[..., 0]/torch.clamp(b2_wh[..., 1],min = 1e-6))), 2)
    alpha = v / torch.clamp((1.0 - iou + v),min=1e-6)
    ciou = ciou - alpha * v
    return ciou
  
def clip_by_tensor(t,t_min,t_max):
    t=t.float()
    result = (t >= t_min).float() * t + (t < t_min).float() * t_min
    result = (result <= t_max).float() * result + (result > t_max).float() * t_max
    return result

def MSELoss(pred,target):
    return (pred-target)**2

def BCELoss(pred,target):
    epsilon = 1e-7
    pred = clip_by_tensor(pred, epsilon, 1.0 - epsilon)
    output = -target * torch.log(pred) - (1.0 - target) * torch.log(1.0 - pred)
    return output

class YOLOLoss(nn.Module):
    def __init__(self, anchors, num_classes, img_size, label_smooth=0, cuda=True):
        super(YOLOLoss, self).__init__()
        self.anchors = anchors
        self.num_anchors = len(anchors)
        self.num_classes = num_classes
        self.bbox_attrs = 5 + num_classes
        self.img_size = img_size
        self.feature_length = [img_size[0]//8,img_size[0]//16,img_size[0]//32]
        self.label_smooth = label_smooth

        self.ignore_threshold = 0.7
        self.lambda_conf = 1.0
        self.lambda_cls = 1.0
        self.lambda_loc = 1.0
        self.cuda = cuda

    def forward(self, input, targets=None):
        # input为bs,3*(5+num_classes),13,13
        
        # 一共多少张图片
        bs = input.size(0)
        # 特征层的高
        in_h = input.size(2)
        # 特征层的宽
        in_w = input.size(3)

        # 计算步长
        # 每一个特征点对应原来的图片上多少个像素点
        # 如果特征层为13x13的话,一个特征点就对应原来的图片上的32个像素点
        stride_h = self.img_size[1] / in_h
        stride_w = self.img_size[0] / in_w

        # 把先验框的尺寸调整成特征层大小的形式
        # 计算出先验框在特征层上对应的宽高
        scaled_anchors = [(a_w / stride_w, a_h / stride_h) for a_w, a_h in self.anchors]
        # bs,3*(5+num_classes),13,13 -> bs,3,13,13,(5+num_classes)
        prediction = input.view(bs, int(self.num_anchors/3),
                                self.bbox_attrs, in_h, in_w).permute(0, 1, 3, 4, 2).contiguous()
        
        # 对prediction预测进行调整
        conf = torch.sigmoid(prediction[..., 4])  # Conf
        pred_cls = torch.sigmoid(prediction[..., 5:])  # Cls pred.

        # 找到哪些先验框内部包含物体
        mask, noobj_mask, t_box, tconf, tcls, box_loss_scale_x, box_loss_scale_y = self.get_target(targets, scaled_anchors,in_w, in_h,self.ignore_threshold)

        noobj_mask, pred_boxes_for_ciou = self.get_ignore(prediction, targets, scaled_anchors, in_w, in_h, noobj_mask)

        if self.cuda:
            mask, noobj_mask = mask.cuda(), noobj_mask.cuda()
            box_loss_scale_x, box_loss_scale_y= box_loss_scale_x.cuda(), box_loss_scale_y.cuda()
            tconf, tcls = tconf.cuda(), tcls.cuda()
            pred_boxes_for_ciou = pred_boxes_for_ciou.cuda()
            t_box = t_box.cuda()

        box_loss_scale = 2-box_loss_scale_x*box_loss_scale_y
        #  losses.

        ciou = box_ciou( pred_boxes_for_ciou[mask.bool()], t_box[mask.bool()])
        loss_ciou = 1 - ciou
        loss_ciou = loss_ciou * box_loss_scale[mask.bool()]
        # ciou = (1 - box_ciou( pred_boxes_for_ciou[mask.bool()], t_box[mask.bool()]))* box_loss_scale[mask.bool()]

        loss_loc = torch.sum(loss_ciou / bs)
        loss_conf = torch.sum(BCELoss(conf, mask) * mask / bs) + \
                    torch.sum(BCELoss(conf, mask) * noobj_mask / bs)
                    
        # print(smooth_labels(tcls[mask == 1],self.label_smooth,self.num_classes))
        loss_cls = torch.sum(BCELoss(pred_cls[mask == 1], smooth_labels(tcls[mask == 1],self.label_smooth,self.num_classes))/bs)
        # print(loss_loc,loss_conf,loss_cls)
        loss = loss_conf * self.lambda_conf + loss_cls * self.lambda_cls + loss_loc * self.lambda_loc
        return loss, loss_conf.item(), loss_cls.item(), loss_loc.item()

    def get_target(self, target, anchors, in_w, in_h, ignore_threshold):
        # 计算一共有多少张图片
        bs = len(target)
        # 获得先验框
        anchor_index = [[0,1,2],[3,4,5],[6,7,8]][self.feature_length.index(in_w)]
        subtract_index = [0,3,6][self.feature_length.index(in_w)]
        # 创建全是0或者全是1的阵列
        mask = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        noobj_mask = torch.ones(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)

        tx = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        ty = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        tw = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        th = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        t_box = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, 4, requires_grad=False)
        tconf = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        tcls = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, self.num_classes, requires_grad=False)

        box_loss_scale_x = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        box_loss_scale_y = torch.zeros(bs, int(self.num_anchors/3), in_h, in_w, requires_grad=False)
        for b in range(bs):
            for t in range(target[b].shape[0]):
                # 计算出在特征层上的点位
                gx = target[b][t, 0] * in_w
                gy = target[b][t, 1] * in_h
                
                gw = target[b][t, 2] * in_w
                gh = target[b][t, 3] * in_h

                # 计算出属于哪个网格
                gi = int(gx)
                gj = int(gy)

                # 计算真实框的位置
                gt_box = torch.FloatTensor(np.array([0, 0, gw, gh])).unsqueeze(0)
                
                # 计算出所有先验框的位置
                anchor_shapes = torch.FloatTensor(np.concatenate((np.zeros((self.num_anchors, 2)),
                                                                  np.array(anchors)), 1))
                # 计算重合程度
                anch_ious = bbox_iou(gt_box, anchor_shapes)
               
                # Find the best matching anchor box
                best_n = np.argmax(anch_ious)
                if best_n not in anchor_index:
                    continue
                # Masks
                if (gj < in_h) and (gi < in_w):
                    best_n = best_n - subtract_index
                    # 判定哪些先验框内部真实的存在物体
                    noobj_mask[b, best_n, gj, gi] = 0
                    mask[b, best_n, gj, gi] = 1
                    # 计算先验框中心调整参数
                    tx[b, best_n, gj, gi] = gx
                    ty[b, best_n, gj, gi] = gy
                    # 计算先验框宽高调整参数
                    tw[b, best_n, gj, gi] = gw
                    th[b, best_n, gj, gi] = gh
                    # 用于获得xywh的比例
                    box_loss_scale_x[b, best_n, gj, gi] = target[b][t, 2]
                    box_loss_scale_y[b, best_n, gj, gi] = target[b][t, 3]
                    # 物体置信度
                    tconf[b, best_n, gj, gi] = 1
                    # 种类
                    tcls[b, best_n, gj, gi, int(target[b][t, 4])] = 1
                else:
                    print('Step {0} out of bound'.format(b))
                    print('gj: {0}, height: {1} | gi: {2}, width: {3}'.format(gj, in_h, gi, in_w))
                    continue
        t_box[...,0] = tx
        t_box[...,1] = ty
        t_box[...,2] = tw
        t_box[...,3] = th
        return mask, noobj_mask, t_box, tconf, tcls, box_loss_scale_x, box_loss_scale_y

    def get_ignore(self,prediction,target,scaled_anchors,in_w, in_h,noobj_mask):
        bs = len(target)
        anchor_index = [[0,1,2],[3,4,5],[6,7,8]][self.feature_length.index(in_w)]
        scaled_anchors = np.array(scaled_anchors)[anchor_index]
        # 先验框的中心位置的调整参数
        x = torch.sigmoid(prediction[..., 0])  
        y = torch.sigmoid(prediction[..., 1])
        # 先验框的宽高调整参数
        w = prediction[..., 2]  # Width
        h = prediction[..., 3]  # Height

        FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor
        LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor

        # 生成网格,先验框中心,网格左上角
        grid_x = torch.linspace(0, in_w - 1, in_w).repeat(in_w, 1).repeat(
            int(bs*self.num_anchors/3), 1, 1).view(x.shape).type(FloatTensor)
        grid_y = torch.linspace(0, in_h - 1, in_h).repeat(in_h, 1).t().repeat(
            int(bs*self.num_anchors/3), 1, 1).view(y.shape).type(FloatTensor)

        # 生成先验框的宽高
        anchor_w = FloatTensor(scaled_anchors).index_select(1, LongTensor([0]))
        anchor_h = FloatTensor(scaled_anchors).index_select(1, LongTensor([1]))
        
        anchor_w = anchor_w.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(w.shape)
        anchor_h = anchor_h.repeat(bs, 1).repeat(1, 1, in_h * in_w).view(h.shape)
        
        # 计算调整后的先验框中心与宽高
        pred_boxes = FloatTensor(prediction[..., :4].shape)
        pred_boxes[..., 0] = x + grid_x
        pred_boxes[..., 1] = y + grid_y
        pred_boxes[..., 2] = torch.exp(w) * anchor_w
        pred_boxes[..., 3] = torch.exp(h) * anchor_h

        for i in range(bs):
            pred_boxes_for_ignore = pred_boxes[i]
            pred_boxes_for_ignore = pred_boxes_for_ignore.view(-1, 4)
            if len(target[i]) > 0:
                gx = target[i][:, 0:1] * in_w
                gy = target[i][:, 1:2] * in_h
                gw = target[i][:, 2:3] * in_w
                gh = target[i][:, 3:4] * in_h
                gt_box = torch.FloatTensor(np.concatenate([gx, gy, gw, gh],-1)).type(FloatTensor)

                anch_ious = iou(gt_box, pred_boxes_for_ignore)
                for t in range(target[i].shape[0]):
                    anch_iou = anch_ious[t].view(pred_boxes[i].size()[:3])
                    noobj_mask[i][anch_iou>self.ignore_threshold] = 0
        return noobj_mask, pred_boxes

训练代码构建

代码讲解和实现

import os
import sys
sys.path.append(r'D:\ubuntu_share\yolov4-pytorch1')
import numpy as np
import time
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
from utils.dataloader import train_dataset_collate, test_dataset_collate, TrainDataset, TestDataset
from utils.generator import TrainGenerator, TestGenerator
from yolo_loss import YOLOLoss
from yolo_layer import YoloLayer
from tqdm import tqdm

from darknet.darknet import *
from easydict import EasyDict
from config import Cfg
from Evaluation.map_eval_pil import compute_map
from tensorboardX import SummaryWriter
from utils.utils import *

Cfg.darknet_cfg = 'work_dir/yolo4_train.cfg'
Cfg.train_data = 'work_dir/my_train1.txt'
Cfg.anchors_path = 'work_dir/yolo_anchors.txt'
Cfg.classes_path = 'work_dir/my_classes.txt'
Cfg.weights_path = 'weights/yolov4.weights'
#Cfg.pth_path = 'pth/yolo4_weights_my.pth'
Cfg.pth_path = 'chk_dark/Epoch_050_Loss_7.7722.pth'
Cfg.check = 'chk_dark'

Cfg.use_data_loader = True
Cfg.first_train = False


Cfg.cur_epoch = 0
Cfg.total_epoch = 80
Cfg.freeze_mode = False

#valid
Cfg.valid_mode = False
Cfg.confidence = 0.3
Cfg.nms_thresh = 0.4
Cfg.draw_box = True
Cfg.save_error_miss = False
Cfg.input_dir = r'D:\ubuntu_share\yolov4-pytorch\object-detection-crowdai'
Cfg.save_err_mis = True


#调用Evaluation模块, 进行map计算和类别准召率计算
def make_labels_and_compute_map(infos, classes, input_dir, save_err_miss=False):
    out_lines,gt_lines = [],[]
    out_path = 'Evaluation/out.txt'
    gt_path = 'Evaluation/true.txt'
    foutw = open(out_path, 'w')
    fgtw = open(gt_path, 'w')
    for info in infos:
        out, gt, shapes = info
        for i, images in enumerate(out):
            for box in images:
                bbx = [box[0]*shapes[i][1], box[1]*shapes[i][0], box[2]*shapes[i][1], box[3]*shapes[i][0]]
                bbx = str(bbx)
                cls = classes[int(box[6])]
                prob = str(box[4])
                img_name = os.path.split(shapes[i][2])[-1]
                line = '\t'.join([img_name, 'Out:', cls, prob, bbx])+'\n'
                out_lines.append(line)

        for i, images in enumerate(gt):
            for box in images:
                bbx = str(box.tolist()[0:4])
                cls = classes[int(box[4])]
                img_name = os.path.split(shapes[i][2])[-1]
                line = '\t'.join([img_name, 'Out:', cls, '1.0', bbx])+'\n'
                gt_lines.append(line)

    foutw.writelines(out_lines)
    fgtw.writelines(gt_lines)
    foutw.close()
    fgtw.close()

    args = EasyDict()
    args.annotation_file = 'Evaluation/true.txt'
    args.detection_file = 'Evaluation/out.txt'
    args.detect_subclass = False
    args.confidence = 0.2
    args.iou = 0.3
    args.record_mistake = True
    args.draw_full_img = save_err_miss
    args.draw_cut_box = False
    args.input_dir = input_dir
    args.out_dir = 'out_dir'
    Map = compute_map(args)
    return Map



# ---------------------------------------------------#
#   获得类和先验框
# ---------------------------------------------------#
def get_classes(classes_path):
    '''loads the classes'''
    with open(classes_path) as f:
        class_names = f.readlines()
    class_names = [c.strip() for c in class_names]
    return class_names


def get_anchors(anchors_path):
    '''loads the anchors from a file'''
    with open(anchors_path) as f:
        anchors = f.readline()
    anchors = [float(x) for x in anchors.split(',')]
    return np.array(anchors).reshape([-1, 3, 2])
    # return np.array(anchors).reshape([-1, 3, 2])[::-1, :, :]


def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']


def gen_lr_scheduler(lr, cur_epoch, model):
    init_lr = lr*pow(0.9, cur_epoch)
    print('init learning rate:', init_lr)
    optimizer = optim.Adam(model.parameters(), init_lr, weight_decay=5e-4)
    if Cfg.cosine_lr:
        lr_scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=5, eta_min=1e-5)
    else:
        lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9)
    return lr_scheduler,optimizer


def gen_burnin_lr_scheduler(lr, cur_batch, model):
    # learning rate setup
    def burnin_schedule(i):
        i = i+1
        if i < Cfg.burn_in:
            factor = pow(i / Cfg.burn_in, 4)
        elif i < Cfg.steps[0]:
            factor = 1.0
        elif i < Cfg.steps[1]:
            factor = 0.1
        else:
            factor = 0.01
        return factor

    if Cfg.TRAIN_OPTIMIZER == 'adam':
        optimizer = optim.Adam(
            [{'params': model.parameters(), 'initial_lr': lr}],
            lr=lr,
            betas=(0.9, 0.999),
            eps=1e-08,
        )
    elif Cfg.TRAIN_OPTIMIZER == 'sgd':
        optimizer = optim.SGD(
            [{'params': model.parameters(), 'initial_lr': lr}],
            lr=lr,
            momentum=Cfg.momentum,
            weight_decay=Cfg.decay,
        )
    else:
        print('optimizer must be adam or sgd...')
        return None,None
    scheduler = optim.lr_scheduler.LambdaLR(optimizer, burnin_schedule, last_epoch=cur_batch-1)
    print('update learning rate:', scheduler.get_last_lr()[0])
    return scheduler, optimizer


def get_train_lines(train_data):
    # 0.1用于验证,0.9用于训练
    val_split = 0.1
    with open(train_data) as f:
        lines = f.readlines()
    np.random.seed(10101)
    np.random.shuffle(lines)
    np.random.seed(None)
    num_val = int(len(lines) * val_split)
    num_train = len(lines) - num_val

    return lines, num_train, num_val


def freeze_training_dark(model, flag=False, layers=137):
    for name, param in model.named_parameters():
        if int(name.split('.')[1]) <= layers:
            print(int(name.split('.')[1]))
            param.requires_grad = flag


def print_model(model):
    model_dict = model.state_dict()  # 会返回网络结构参数的名称,作为字典键值,参数权重作为值
    for key in model_dict:
        print('model items:', key, '---->', np.shape(model_dict[key]))


def load_model_pth(model, pth):
    print('Loading weights into state dict, name: %s'%(pth))
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model_dict = model.state_dict()
    pretrained_dict = torch.load(pth, map_location=device)
    pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}
    for key in pretrained_dict:
        print('pretrained items:', key)
    model_dict.update(pretrained_dict)
    model.load_state_dict(model_dict)
    print('Finished!')
    return model


def get_epoch_by_pth():
    try:
        pth = Cfg.pth_path
        epoch = os.path.split(pth)[-1].split('_')[1]
        epoch = int(epoch)
    except Exception as e:
        print(e, 'start epoch: %d'%Cfg.cur_epoch)
        return Cfg.cur_epoch
    return epoch


def find_pth_by_epoch(epoch, path):
    pth_list = os.listdir(path)
    for name in pth_list:
        curpo = name.split('_')[1]
        if curpo == '%03d'%(epoch):
            return os.path.join(path, name)
    return ''


def valid(epoch_lis, classes, draw=True, cuda=True, anchors=[]):
    writer = SummaryWriter(log_dir='valid_logs',flush_secs=60)
    epoch_size_val = num_val // gpu_batch

    model = Darknet(Darknet_Cfg)

    anchor_masks = [[0, 1, 2], [3, 4, 5], [6, 7, 8]]
    yolo_decodes = []
    anchors = anchors.reshape([-1])
    for i in range(3):
        head = YoloLayer((Cfg.width, Cfg.height), anchor_masks, len(classes),
                         anchors, anchors.shape[0] // 2).eval()
        yolo_decodes.append(head)

    if Use_Data_Loader:
        val_dataset = TestDataset(lines[num_train:], (input_shape[0], input_shape[1]))
        gen_val = DataLoader(val_dataset, batch_size=gpu_batch, num_workers=8, pin_memory=True,
                             drop_last=True, collate_fn=test_dataset_collate)
    else:
        gen_val = TestGenerator(gpu_batch, lines[num_train:],
                            (input_shape[0], input_shape[1])).generate()

    for epo in epoch_lis:
        pth_path = find_pth_by_epoch(epo, Cfg.check)
        if not pth_path:
            print('pth_path is error...')
            return False
        model = load_model_pth(model, pth_path)
        cudnn.benchmark = True
        model = model.cuda()
        model.eval()   # 将模型设置为验证模式,就不会计算梯度,节省显存
        with tqdm(total=epoch_size_val, mininterval=0.3) as pbar:
            infos = []
            for i, batch in enumerate(gen_val):
                images_src, images, targets, shapes = batch[0], batch[1], batch[2], batch[3]
                with torch.no_grad():
                    if cuda:
                        images_val = Variable(torch.from_numpy(images).type(torch.FloatTensor)).cuda()
                    else:
                        images_val = Variable(torch.from_numpy(images).type(torch.FloatTensor))
                    outputs = model(images_val)

                    output_list = []
                    for i in range(3):
                        output_list.append(yolo_decodes[i](outputs[i]))
                    output = torch.cat(output_list, 1)
                    batch_detections = non_max_suppression(output, len(classes),
                                                           conf_thres=Cfg.confidence,
                                                           nms_thres=Cfg.nms_thresh)
                    #print(batch_detections)
                    boxs = [box.cpu().numpy() for box in batch_detections if box != None]
                    #boxs = utils.post_processing(images_val, Cfg.confidence, Cfg.nms_thresh, outputs)
                    infos.append([boxs, targets, shapes])

                    if draw:
                        for x in range(len(boxs)):
                            os.makedirs('result_%d'%epo, exist_ok=True)
                            savename = os.path.join('result_%d'%epo, os.path.split(shapes[x][2])[-1])
                            plot_boxes_cv2(images_src[x], boxs[x], savename=savename, class_names=class_names)
                pbar.update(1)
            print()
            print('===========================================================================================================')
            print('++++++++cur valid epoch %d, pth_name: %s++++++++'%(epo, pth_path))
            Map = make_labels_and_compute_map(infos, classes, Cfg.input_dir, save_err_miss=Cfg.save_err_mis)
            writer.add_scalar('MAP/epoch', Map, epo)
            print()

    return True

def train(cur_epoch, Epoch, cuda=True, anchors=[]):
    #使用tensorboardX来可视化训练指标
    writer = SummaryWriter(log_dir='train_logs',flush_secs=60)

    model = Darknet(Darknet_Cfg)
    model.print_network()   # 打印网络结构,同样可以采用model.print_model()



    #第一次训练直接导入darknet的权重
    #中间训练导入check_point里的权重
    #cut:
    # 默认: 137, 推荐104(only backbone), 116(backbone+SPP), 126(backbone+SPP+1_concat)
    # cut必须 < 138,因为138刚好是76的1X1卷积头部,不同类别数的检测任务,1X1预测卷积的权重参数是不一样的
    if Cfg.first_train:
        model.load_weights(weights_path, pretrained=True, cut=116)
    else:
        model = load_model_pth(model, pth_path)

    cudnn.benchmark = True
    model = model.cuda()

    # 建立loss函数
    yolo_losses = []
    for i in range(3):
        yolo_losses.append(YOLOLoss(np.reshape(anchors, [-1, 2]), num_classes,
                                    (input_shape[1], input_shape[0]), smoooth_label)) # 每三个头计算LOSS的时候就会调用前向传播

    #lr_scheduler, optimizer = gen_lr_scheduler(lr, cur_epoch, model)
    #使用darknet框架里的burn_in训练方法,调整学习率
    lr_scheduler, optimizer = gen_burnin_lr_scheduler(lr, cur_batch, model)

    # if Cfg.freeze_mode:
    #     freeze_training_dark(model, flag=False, layers=137)
    # else:
    #     freeze_training_dark(model, flag=True, layers=137)

    if Use_Data_Loader:
        train_dataset = TrainDataset(lines[:num_train], (input_shape[0], input_shape[1]), mosaic=mosaic) # 检查batch中的图像是不是会出错,如果出错的话定位到出错图像
        gen = DataLoader(train_dataset, batch_size=gpu_batch, num_workers=8, pin_memory=True,
                         drop_last=True, collate_fn=train_dataset_collate) # 在这里进行了数据增强
    else:
        gen = TrainGenerator(gpu_batch, lines[:num_train],
                        (input_shape[0], input_shape[1])).generate(mosaic=mosaic)  # 检查batch中的图像是不是会出错,如果出错的话定位到出错图像

    epoch_size = max(1, num_train // gpu_batch)

    for epoch in range(cur_epoch, Epoch):
        total_loss = 0
        cur_step = 0
        with tqdm(total=epoch_size, desc=f'Epoch {epoch + 1}/{Epoch}', postfix=dict, mininterval=0.3) as pbar:
            model.train()
            start_time = time.time()
            for iteration, batch in enumerate(gen):
                if iteration >= epoch_size:
                    break
                images, targets = batch[0], batch[1]
                with torch.no_grad():
                    if cuda:
                        images = Variable(torch.from_numpy(images).type(torch.FloatTensor)).cuda()
                        targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets]
                    else:
                        images = Variable(torch.from_numpy(images).type(torch.FloatTensor))
                        targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets]
                outputs = model(images)
                losses = []
                losses_loc = []
                losses_conf = []
                losses_cls = []
                for i in range(3):
                    loss_item = yolo_losses[i](outputs[i], targets)
                    losses.append(loss_item[0])
                    losses_loc.append(loss_item[3])
                    losses_conf.append(loss_item[1])
                    losses_cls.append(loss_item[2])

                loss = sum(losses) / Cfg.subdivisions
                loss_loc = sum(losses_loc)
                loss_conf = sum(losses_conf)
                loss_cls = sum(losses_cls)
                loss.backward()
                waste_time = time.time() - start_time
                total_loss += loss
                cur_step += 1
                #将第五个Epoch开始写入到tensorboard,每一步都写
                if epoch > 2:
                    writer.add_scalar('total_loss/gpu_batch', loss*Cfg.subdivisions, (epoch * epoch_size + iteration))
                    writer.add_scalar('loss_loc/gpu_batch', loss_loc, (epoch * epoch_size + iteration))
                    writer.add_scalar('loss_conf/gpu_batch', loss_conf, (epoch * epoch_size + iteration))
                    writer.add_scalar('loss_cls/gpu_batch', loss_cls, (epoch * epoch_size + iteration))

                if cur_step % Cfg.subdivisions == 0:
                    optimizer.step()
                    if Cfg.burn_in > 0:
                        lr_scheduler.step()
                    model.zero_grad()

                pbar.set_postfix(**{'loss_cur': loss.item()*Cfg.subdivisions,
                                    'loss_total': total_loss.item() / (iteration + 1)*Cfg.subdivisions,
                                    'lr': get_lr(optimizer),
                                    'step/s': waste_time})
                pbar.update(1)
                start_time = time.time()

        # if Cfg.burn_in == 0:
        #     lr_scheduler.step()

        print('Epoch:' + str(epoch + 1) + '/' + str(Epoch))
        print('Total Loss: %.4f || Last Loss: %.4f ' % (total_loss / (epoch_size + 1)*Cfg.subdivisions, loss.item()*Cfg.subdivisions))
        print('Saving state, iter:', str(epoch + 1))
        torch.save(model.state_dict(), '%s/Epoch_%03d_Loss_%.4f.pth' % (Cfg.check,
        (epoch + 1), total_loss / (epoch_size + 1)*Cfg.subdivisions))


if __name__ == "__main__":
    # 一般为608
    input_shape = (Cfg.h, Cfg.w)
    # 是否使用余弦学习率
    Cosine_lr = Cfg.cosine_lr
    # 是否使用马赛克数据增强
    mosaic = Cfg.mosaic
    # 用于设定是否使用cuda
    Cuda = True
    smoooth_label = Cfg.smoooth_label
    # -------------------------------#
    #   Dataloder的使用
    # -------------------------------#
    Use_Data_Loader = Cfg.use_data_loader
    Darknet_Cfg = Cfg.darknet_cfg

    train_data = Cfg.train_data
    # -------------------------------#
    #   获得先验框和类
    # -------------------------------#
    class_names = get_classes(Cfg.classes_path)
    num_classes = len(class_names)
    print('classes:', class_names, num_classes)

    lr = Cfg.learning_rate
    batch_size = Cfg.batch

    #是否为首次训练
    if Cfg.first_train:
        cur_epoch = 0
    else:
        cur_epoch = get_epoch_by_pth()

    total_epoch = Cfg.total_epoch
    # 一次送入GPU的数据量
    gpu_batch = Cfg.batch // Cfg.subdivisions  # gpu_batch=8
    lines, num_train, num_val = get_train_lines(train_data)
    # 当前的训练batch数,用于调节是否burn_in,以及学习率,恢复训练时会使用到
    # 首次训练为0
    cur_batch = num_train * cur_epoch // batch_size
    # 1.需要生成的先验框尺寸,如果用darknet权重和cfg加载,会使用yolov4.cfg里的anchors
    # 2.对于计算训练损失,不论是darknet权重加载还是pth加载,都需要使用这个参数
    anchors = get_anchors(Cfg.anchors_path)

    weights_path = Cfg.weights_path
    pth_path = Cfg.pth_path

    if Cfg.valid_mode:
        valid([50], classes={0: 'car', 1: 'pedestrian'}, draw=Cfg.draw_box, anchors=anchors)
    else:
        train(cur_epoch, total_epoch, cuda=True, anchors=anchors)

你可能感兴趣的:(CV算法学习计划-基础之上,pytorch,深度学习,神经网络)