libtorch 1.12.1 cuda11.3 torch1.12.1 visual stdio2019环境搭建

conda 的环境

name: torch1.12.1
channels:
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
  - https://mirrors.ustc.edu.cn/anaconda/cloud/menpo/
  - https://mirrors.ustc.edu.cn/anaconda/cloud/bioconda/
  - https://mirrors.ustc.edu.cn/anaconda/cloud/msys2/
  - https://mirrors.ustc.edu.cn/anaconda/cloud/conda-forge/
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/free/
  - https://mirrors.ustc.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/Paddle/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/fastai/
  - https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
dependencies:
  - blas=1.0=mkl
  - brotlipy=0.7.0=py310h2bbff1b_1002
  - bzip2=1.0.8=he774522_0
  - ca-certificates=2022.10.11=haa95532_0
  - certifi=2022.9.24=py310haa95532_0
  - cffi=1.15.1=py310h2bbff1b_0
  - charset-normalizer=2.0.4=pyhd3eb1b0_0
  - cryptography=38.0.1=py310h21b164f_0
  - cudatoolkit=11.3.1=h59b6b97_2
  - freetype=2.12.1=ha860e81_0
  - idna=3.4=py310haa95532_0
  - intel-openmp=2021.4.0=haa95532_3556
  - jpeg=9e=h2bbff1b_0
  - lerc=3.0=hd77b12b_0
  - libdeflate=1.8=h2bbff1b_5
  - libffi=3.4.2=hd77b12b_4
  - libpng=1.6.37=h2a8f88b_0
  - libtiff=4.4.0=h8a3f274_1
  - libuv=1.40.0=he774522_0
  - libwebp=1.2.4=h2bbff1b_0
  - libwebp-base=1.2.4=h2bbff1b_0
  - lz4-c=1.9.3=h2bbff1b_1
  - mkl=2021.4.0=haa95532_640
  - mkl-service=2.4.0=py310h2bbff1b_0
  - mkl_fft=1.3.1=py310ha0764ea_0
  - mkl_random=1.2.2=py310h4ed8f06_0
  - numpy=1.23.3=py310h60c9a35_0
  - numpy-base=1.23.3=py310h04254f7_0
  - openssl=1.1.1s=h2bbff1b_0
  - pillow=9.2.0=py310hdc2b20a_1
  - pip=22.2.2=py310haa95532_0
  - pycparser=2.21=pyhd3eb1b0_0
  - pyopenssl=22.0.0=pyhd3eb1b0_0
  - pysocks=1.7.1=py310haa95532_0
  - python=3.10.6=hbb2ffb3_1
  - pytorch=1.12.1=py3.10_cuda11.3_cudnn8_0
  - pytorch-mutex=1.0=cuda
  - requests=2.28.1=py310haa95532_0
  - setuptools=65.5.0=py310haa95532_0
  - six=1.16.0=pyhd3eb1b0_1
  - sqlite=3.39.3=h2bbff1b_0
  - tk=8.6.12=h2bbff1b_0
  - torchaudio=0.12.1=py310_cu113
  - torchvision=0.13.1=py310_cu113
  - typing_extensions=4.3.0=py310haa95532_0
  - tzdata=2022f=h04d1e81_0
  - urllib3=1.26.12=py310haa95532_0
  - vc=14.2=h21ff451_1
  - vs2015_runtime=14.27.29016=h5e58377_2
  - wheel=0.37.1=pyhd3eb1b0_0
  - win_inet_pton=1.1.0=py310haa95532_0
  - wincertstore=0.2=py310haa95532_2
  - xz=5.2.6=h8cc25b3_0
  - zlib=1.2.13=h8cc25b3_0
  - zstd=1.5.2=h19a0ad4_0
  - pip:
    - absl-py==1.3.0
    - albumentations==1.3.0
    - cachetools==5.2.0
    - colorama==0.4.6
    - contourpy==1.0.6
    - cycler==0.11.0
    - ensemble-boxes==1.0.9
    - ffmpeg==1.4
    - fonttools==4.38.0
    - google-auth==2.14.1
    - google-auth-oauthlib==0.4.6
    - grpcio==1.50.0
    - imageio==2.22.4
    - joblib==1.2.0
    - kiwisolver==1.4.4
    - llvmlite==0.39.1
    - markdown==3.4.1
    - markupsafe==2.1.1
    - matplotlib==3.6.2
    - networkx==2.8.8
    - numba==0.56.4
    - oauthlib==3.2.2
    - opencv-contrib-python==4.6.0.66
    - opencv-python==4.5.5.64
    - opencv-python-headless==4.6.0.66
    - packaging==21.3
    - pandas==1.5.1
    - protobuf==3.20.3
    - pyasn1==0.4.8
    - pyasn1-modules==0.2.8
    - pyparsing==3.0.9
    - python-dateutil==2.8.2
    - pytz==2022.6
    - pywavelets==1.4.1
    - pyyaml==6.0
    - qudida==0.0.4
    - requests-oauthlib==1.3.1
    - rsa==4.9
    - scikit-image==0.19.3
    - scikit-learn==1.1.3
    - scipy==1.9.3
    - seaborn==0.12.1
    - tensorboard==2.11.0
    - tensorboard-data-server==0.6.1
    - tensorboard-plugin-wit==1.8.1
    - thop==0.1.1-2209072238
    - threadpoolctl==3.1.0
    - tifffile==2022.10.10
    - tqdm==4.64.1
    - werkzeug==2.2.2
prefix: C:\Users\20169\.conda\envs\torch1.12.1

cuda环境
libtorch 1.12.1 cuda11.3 torch1.12.1 visual stdio2019环境搭建_第1张图片
libtorch包 release版本的
libtorch 1.12.1 cuda11.3 torch1.12.1 visual stdio2019环境搭建_第2张图片
libtorch 1.12.1 cuda11.3 torch1.12.1 visual stdio2019环境搭建_第3张图片

void test_libtorch_version() {
	std::cout << "Hello Lbitorch:" << std::endl;
	std::cout << "	cuDNN available: " << torch::cuda::cudnn_is_available() << std::endl;
	std::cout << "	CUDA available: " << torch::cuda::is_available() << std::endl;
	std::cout << "  CUDA_VERSION: " << CUDA_VERSION << std::endl;
	std::cout << "  TORCH_VERSION: " << TORCH_VERSION << std::endl;
}

visual stdio2019配置
dll库拷贝到 x64/release里面
libtorch 1.12.1 cuda11.3 torch1.12.1 visual stdio2019环境搭建_第4张图片

命令参数可以忽略
环境:

PATH=%PATH%
C:\Env\libTorch\lib

libtorch 1.12.1 cuda11.3 torch1.12.1 visual stdio2019环境搭建_第5张图片
VC++目录

包含目录
C:\Env\opencv\buildCuda\install\include
C:\Env\opencv\buildCuda\install\include\opencv2
C:\Env\libtorch\include\torch\csrc\api\include
C:\Env\libtorch\lib
C:\Env\libtorch\include
C:\Env\linearAlgebra\eigen-3.4.0  #这个libtorch用不到可以忽略
库目录:
C:\Env\opencv\buildCuda\install\x64\vc16\lib
C:\Env\libtorch\lib

libtorch 1.12.1 cuda11.3 torch1.12.1 visual stdio2019环境搭建_第6张图片
C/C++附加包含目录
libtorch 1.12.1 cuda11.3 torch1.12.1 visual stdio2019环境搭建_第7张图片

C:\Env\libTorch\include
C:\Env\libTorch\include\torch\csrc\api\include

语言
libtorch 1.12.1 cuda11.3 torch1.12.1 visual stdio2019环境搭建_第8张图片

链接器 —附加库目录
libtorch 1.12.1 cuda11.3 torch1.12.1 visual stdio2019环境搭建_第9张图片

C:\Env\libTorch\lib

附加依赖项
libtorch 1.12.1 cuda11.3 torch1.12.1 visual stdio2019环境搭建_第10张图片

C:\Env\libTorch\lib\torch_cuda.lib
C:\Env\libTorch\lib\torch_cpu.lib
C:\Env\libTorch\lib\asmjit.lib
C:\Env\libTorch\lib\c10.lib
C:\Env\libTorch\lib\c10_cuda.lib
C:\Env\libTorch\lib\clog.lib
C:\Env\libTorch\lib\cpuinfo.lib
C:\Env\libTorch\lib\dnnl.lib
C:\Env\libTorch\lib\fbgemm.lib
C:\Env\libTorch\lib\kineto.lib
C:\Env\libTorch\lib\libprotobuf.lib
C:\Env\libTorch\lib\torch.lib
C:\Env\libTorch\lib\torch_cuda_cpp.lib
C:\Env\libTorch\lib\torch_cuda_cu.lib
C:\Env\libTorch\lib\pthreadpool.lib
C:\Env\libTorch\lib\libprotobuf-lite.lib
C:\Env\libTorch\lib\caffe2_nvrtc.lib
C:\Env\libTorch\lib\XNNPACK.lib
opencv_world460.lib

命令行
libtorch 1.12.1 cuda11.3 torch1.12.1 visual stdio2019环境搭建_第11张图片

/INCLUDE:?warp_size@cuda@at@@YAHXZ /INCLUDE:?_torch_cuda_cu_linker_symbol_op_cuda@native@at@@YA?AVTensor@2@AEBV32@@Z 

C++代码

#include
#include
#include

void test_libtorch_version() {
	std::cout << "Hello Lbitorch:" << std::endl;
	std::cout << "	cuDNN available: " << torch::cuda::cudnn_is_available() << std::endl;
	std::cout << "	CUDA available: " << torch::cuda::is_available() << std::endl;
	std::cout << "  TORCH_VERSION: " << TORCH_VERSION << std::endl;
}
auto loadModel(const std::string&& modelPath,torch::jit::Module & model,bool use_gpu=false) {
	if (torch::cuda::is_available() && use_gpu) {
		std::cout << "加载到CUDA上" << std::endl;
		auto device_type = torch::kCUDA;
		try {
			 model = torch::jit::load(modelPath, device_type);
			std::cout << "CUDA加载成功" << std::endl;
		}
		catch (const c10::Error& e) {
			std::cout<< "CUDA加载失败" << std::endl;
			std::exit(EXIT_FAILURE);
		}
	}
	else {
		std::cout << "加载到CPU上" << std::endl;
		auto device_type = torch::kCPU; //默认也是cpu
		try {
			model = torch::jit::load(modelPath, device_type);
			std::cout << "Cpu加载成功" << std::endl;
		}
		catch (const c10::Error& e) {
			std::cout << "Cpu加载失败" << std::endl;
			std::exit(EXIT_FAILURE);
		}
	}
}
int main() {
	test_libtorch_version();

	torch::Device device(torch::kCUDA);
	torch::Tensor tensor1 = torch::eye(3); // (A) tensor-cpu
	std::cout << tensor1 << std::endl;

	torch::Tensor tensor2 = torch::eye(3, device); // (B) tensor-cuda
	std::cout << "cuda .." << std::endl;
	std::cout << tensor2 << std::endl;
	auto your_path_cpu = "D:/pycharm/YOLO/xfs/yolov5-6.0/runs/train/exp/weights/ts_cpu.pt";
	auto your_path_gpu = "D:/pycharm/YOLO/xfs/yolov5-6.0/runs/train/exp/weights/ts_gpu.pt";
	
	torch::jit::Module model_c;
	std::cout << "加载cpu的PT模型" << std::endl;
	loadModel(your_path_cpu, model_c,false);
	
	torch::jit::Module model_g;
	std::cout << "加载gpu的PT模型" << std::endl;
	loadModel(your_path_gpu, model_g,true);
return 0;
}

libtorch 1.12.1 cuda11.3 torch1.12.1 visual stdio2019环境搭建_第12张图片

python部分:
yolov5—> export.py

# YOLOv5  by Ultralytics, GPL-3.0 license
"""
Export a YOLOv5 PyTorch model to TorchScript, ONNX, CoreML, TensorFlow (saved_model, pb, TFLite, TF.js,) formats
TensorFlow exports authored by https://github.com/zldrobit

Usage:
    $ python path/to/export.py --weights yolov5s.pt --include torchscript onnx coreml saved_model pb tflite tfjs

Inference:
    $ python path/to/detect.py --weights yolov5s.pt
                                         yolov5s.onnx  (must export with --dynamic)
                                         yolov5s_saved_model
                                         yolov5s.pb
                                         yolov5s.tflite

TensorFlow.js:
    $ cd .. && git clone https://github.com/zldrobit/tfjs-yolov5-example.git && cd tfjs-yolov5-example
    $ npm install
    $ ln -s ../../yolov5/yolov5s_web_model public/yolov5s_web_model
    $ npm start
"""

import argparse
import os
import subprocess
import sys
import time
from pathlib import Path

import torch
import torch.nn as nn
from torch.jit import ScriptModule
from torch.utils.mobile_optimizer import optimize_for_mobile

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import Conv
from models.experimental import attempt_load
from models.yolo import Detect
from utils.activations import SiLU
from utils.datasets import LoadImages
from utils.general import colorstr, check_dataset, check_img_size, check_requirements, file_size, print_args, \
    set_logging, url2file
from utils.torch_utils import select_device


def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
    # YOLOv5 TorchScript model export
    try:
        print(f'\n{prefix} starting export with torch {torch.__version__}...')
        f = file.with_suffix('.torchscript.pt')

        ts = torch.jit.trace(model, im, strict=False)

        (optimize_for_mobile(ts) if optimize else ts).save(f)
        print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    except Exception as e:
        print(f'{prefix} export failure: {e}')


def export_onnx(model, im, file, opset, train, dynamic, simplify, prefix=colorstr('ONNX:')):
    # YOLOv5 ONNX export
    try:
        check_requirements(('onnx',))
        import onnx

        print(f'\n{prefix} starting export with onnx {onnx.__version__}...')
        f = file.with_suffix('.onnx')

        torch.onnx.export(model, im, f, verbose=False, opset_version=opset,
                          training=torch.onnx.TrainingMode.TRAINING if train else torch.onnx.TrainingMode.EVAL,
                          do_constant_folding=not train,
                          input_names=['images'],
                          output_names=['output'],
                          dynamic_axes={'images': {0: 'batch', 2: 'height', 3: 'width'},  # shape(1,3,640,640)
                                        'output': {0: 'batch', 1: 'anchors'}  # shape(1,25200,85)
                                        } if dynamic else None)

        # Checks
        model_onnx = onnx.load(f)  # load onnx model
        onnx.checker.check_model(model_onnx)  # check onnx model
        # print(onnx.helper.printable_graph(model_onnx.graph))  # print

        # Simplify
        if simplify:
            try:
                check_requirements(('onnx-simplifier',))
                import onnxsim

                print(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
                model_onnx, check = onnxsim.simplify(
                    model_onnx,
                    dynamic_input_shape=dynamic,
                    input_shapes={'images': list(im.shape)} if dynamic else None)
                assert check, 'assert check failed'
                onnx.save(model_onnx, f)
            except Exception as e:
                print(f'{prefix} simplifier failure: {e}')
        print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
        print(f"{prefix} run --dynamic ONNX model inference with: 'python detect.py --weights {f}'")
    except Exception as e:
        print(f'{prefix} export failure: {e}')


def export_coreml(model, im, file, prefix=colorstr('CoreML:')):
    # YOLOv5 CoreML export
    ct_model = None
    try:
        check_requirements(('coremltools',))
        import coremltools as ct

        print(f'\n{prefix} starting export with coremltools {ct.__version__}...')
        f = file.with_suffix('.mlmodel')

        model.train()  # CoreML exports should be placed in model.train() mode
        ts = torch.jit.trace(model, im, strict=False)  # TorchScript model
        ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255.0, bias=[0, 0, 0])])
        ct_model.save(f)

        print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    except Exception as e:
        print(f'\n{prefix} export failure: {e}')

    return ct_model


def export_saved_model(model, im, file, dynamic,
                       tf_nms=False, agnostic_nms=False, topk_per_class=100, topk_all=100, iou_thres=0.45,
                       conf_thres=0.25, prefix=colorstr('TensorFlow saved_model:')):
    # YOLOv5 TensorFlow saved_model export
    keras_model = None
    try:
        import tensorflow as tf
        from tensorflow import keras
        from models.tf import TFModel, TFDetect

        print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
        f = str(file).replace('.pt', '_saved_model')
        batch_size, ch, *imgsz = list(im.shape)  # BCHW

        tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
        im = tf.zeros((batch_size, *imgsz, 3))  # BHWC order for TensorFlow
        y = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
        inputs = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
        outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
        keras_model = keras.Model(inputs=inputs, outputs=outputs)
        keras_model.trainable = False
        keras_model.summary()
        keras_model.save(f, save_format='tf')

        print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    except Exception as e:
        print(f'\n{prefix} export failure: {e}')

    return keras_model


def export_pb(keras_model, im, file, prefix=colorstr('TensorFlow GraphDef:')):
    # YOLOv5 TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
    try:
        import tensorflow as tf
        from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2

        print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
        f = file.with_suffix('.pb')

        m = tf.function(lambda x: keras_model(x))  # full model
        m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
        frozen_func = convert_variables_to_constants_v2(m)
        frozen_func.graph.as_graph_def()
        tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)

        print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    except Exception as e:
        print(f'\n{prefix} export failure: {e}')


def export_tflite(keras_model, im, file, int8, data, ncalib, prefix=colorstr('TensorFlow Lite:')):
    # YOLOv5 TensorFlow Lite export
    try:
        import tensorflow as tf
        from models.tf import representative_dataset_gen

        print(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
        batch_size, ch, *imgsz = list(im.shape)  # BCHW
        f = str(file).replace('.pt', '-fp16.tflite')

        converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
        converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
        converter.target_spec.supported_types = [tf.float16]
        converter.optimizations = [tf.lite.Optimize.DEFAULT]
        if int8:
            dataset = LoadImages(check_dataset(data)['train'], img_size=imgsz, auto=False)  # representative data
            converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib)
            converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
            converter.target_spec.supported_types = []
            converter.inference_input_type = tf.uint8  # or tf.int8
            converter.inference_output_type = tf.uint8  # or tf.int8
            converter.experimental_new_quantizer = False
            f = str(file).replace('.pt', '-int8.tflite')

        tflite_model = converter.convert()
        open(f, "wb").write(tflite_model)
        print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')

    except Exception as e:
        print(f'\n{prefix} export failure: {e}')


def export_tfjs(keras_model, im, file, prefix=colorstr('TensorFlow.js:')):
    # YOLOv5 TensorFlow.js export
    try:
        check_requirements(('tensorflowjs',))
        import re
        import tensorflowjs as tfjs

        print(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
        f = str(file).replace('.pt', '_web_model')  # js dir
        f_pb = file.with_suffix('.pb')  # *.pb path
        f_json = f + '/model.json'  # *.json path

        cmd = f"tensorflowjs_converter --input_format=tf_frozen_model " \
              f"--output_node_names='Identity,Identity_1,Identity_2,Identity_3' {f_pb} {f}"
        subprocess.run(cmd, shell=True)

        json = open(f_json).read()
        with open(f_json, 'w') as j:  # sort JSON Identity_* in ascending order
            subst = re.sub(
                r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
                r'"Identity.?.?": {"name": "Identity.?.?"}, '
                r'"Identity.?.?": {"name": "Identity.?.?"}, '
                r'"Identity.?.?": {"name": "Identity.?.?"}}}',
                r'{"outputs": {"Identity": {"name": "Identity"}, '
                r'"Identity_1": {"name": "Identity_1"}, '
                r'"Identity_2": {"name": "Identity_2"}, '
                r'"Identity_3": {"name": "Identity_3"}}}',
                json)
            j.write(subst)

        print(f'{prefix} export success, saved as {f} ({file_size(f):.1f} MB)')
    except Exception as e:
        print(f'\n{prefix} export failure: {e}')


@torch.no_grad()
def run(data=ROOT / 'data/coco128.yaml',  # 'dataset.yaml path'
        weights=ROOT / 'yolov5s.pt',  # weights path
        imgsz=(640, 640),  # image (height, width)
        batch_size=1,  # batch size
        device='cpu',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        include=('torchscript', 'onnx', 'coreml'),  # include formats
        half=False,  # FP16 half-precision export
        inplace=False,  # set YOLOv5 Detect() inplace=True
        train=False,  # model.train() mode
        optimize=False,  # TorchScript: optimize for mobile
        int8=False,  # CoreML/TF INT8 quantization
        dynamic=False,  # ONNX/TF: dynamic axes
        simplify=False,  # ONNX: simplify model
        opset=12,  # ONNX: opset version
        topk_per_class=100,  # TF.js NMS: topk per class to keep
        topk_all=100,  # TF.js NMS: topk for all classes to keep
        iou_thres=0.45,  # TF.js NMS: IoU threshold
        conf_thres=0.25  # TF.js NMS: confidence threshold
        ):
    t = time.time()
    include = [x.lower() for x in include]
    tf_exports = list(x in include for x in ('saved_model', 'pb', 'tflite', 'tfjs'))  # TensorFlow exports
    imgsz *= 2 if len(imgsz) == 1 else 1  # expand
    file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights)

    # Load PyTorch model
    device = select_device(device)
    assert not (device.type == 'cpu' and half), '--half only compatible with GPU export, i.e. use --device 0'
    model = attempt_load(weights, map_location=device, inplace=True, fuse=True)  # load FP32 model
    nc, names = model.nc, model.names  # number of classes, class names

    # Input
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz = [check_img_size(x, gs) for x in imgsz]  # verify img_size are gs-multiples
    im = torch.zeros(batch_size, 3, *imgsz).to(device)  # image size(1,3,320,192) BCHW iDetection

    # Update model
    if half:
        im, model = im.half(), model.half()  # to FP16
    model.train() if train else model.eval()  # training mode = no Detect() layer grid construction
    for k, m in model.named_modules():
        if isinstance(m, Conv):  # assign export-friendly activations
            if isinstance(m.act, nn.SiLU):
                m.act = SiLU()
        elif isinstance(m, Detect):
            m.inplace = inplace
            m.onnx_dynamic = dynamic
            # m.forward = m.forward_export  # assign forward (optional)

    for _ in range(2):
        y = model(im)  # dry runs
    print(f"\n{colorstr('PyTorch:')} starting from {file} ({file_size(file):.1f} MB)")

    # Exports
    if 'torchscript' in include:
        export_torchscript(model, im, file, optimize)
    if 'onnx' in include:
        export_onnx(model, im, file, opset, train, dynamic, simplify)
    if 'coreml' in include:
        export_coreml(model, im, file)

    # TensorFlow Exports
    if any(tf_exports):
        pb, tflite, tfjs = tf_exports[1:]
        assert not (tflite and tfjs), 'TFLite and TF.js models must be exported separately, please pass only one type.'
        model = export_saved_model(model, im, file, dynamic, tf_nms=tfjs, agnostic_nms=tfjs,
                                   topk_per_class=topk_per_class, topk_all=topk_all, conf_thres=conf_thres,
                                   iou_thres=iou_thres)  # keras model
        if pb or tfjs:  # pb prerequisite to tfjs
            export_pb(model, im, file)
        if tflite:
            export_tflite(model, im, file, int8=int8, data=data, ncalib=100)
        if tfjs:
            export_tfjs(model, im, file)

    # Finish
    print(f'\nExport complete ({time.time() - t:.2f}s)'
          f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
          f'\nVisualize with https://netron.app')


def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
    parser.add_argument('--weights', type=str, default=r'D:\pycharm\YOLO\xfs\yolov5-6.0\runs\train\exp\weights\best.pt', help='weights path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
    parser.add_argument('--inplace', action='store_true', help='set YOLOv5 Detect() inplace=True')
    parser.add_argument('--train', action='store_true', help='model.train() mode')
    parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
    parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
    parser.add_argument('--dynamic', action='store_true', help='ONNX/TF: dynamic axes')
    parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
    parser.add_argument('--opset', type=int, default=13, help='ONNX: opset version')
    parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
    parser.add_argument('--topk-all', type=int, default=100, help='TF.js NMS: topk for all classes to keep')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='TF.js NMS: IoU threshold')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='TF.js NMS: confidence threshold')
    parser.add_argument('--include', nargs='+',
                        default=['torchscript'],
                        help='available formats are (torchscript, onnx, coreml, saved_model, pb, tflite, tfjs)')
    opt = parser.parse_args()
    print_args(FILE.stem, opt)
    return opt


def main(opt):
    set_logging()
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)

你可能感兴趣的:(C++,python,pytorch,开发语言)