PyTorch入门一:PyTorch搭建多层全连接神经网络实现MNIST手写数字识别分类

①全连接神经网络

 

神经网络中除输入层之外的每个节点都和上一层的所有节点有连接

PyTorch入门一:PyTorch搭建多层全连接神经网络实现MNIST手写数字识别分类_第1张图片

②先用pytorch实现最简单的三层全连接神经网络

A简单的三层全连接神经网络

class simpleNet(nn.Module):                            #定义模组,固定
    def_init_(self,in_dim,n_hidden_1,n_hidden_2,out_dim):     #输入的维度,第一层神经元的个数,第二层个数,输出维度
        super(simpleNet,self)._init_()               #固定
        slf.layer1 = nn.linear(in_dim,n.hidden_1)
        slf.layer2 = nn.linear(n.hidden_1,n.hidden_2)
        slf.layer3 = nn.linear(n.hidden_2,out_dim)
        
    def foward(self,x):              #固定
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        return x
    

B添加激活函数的FC

class Activate_Net(nn.Module):                            
    def_init_(self,in_dim,n_hidden_1,n_hidden_2,out_dim):     
        super(NeuralNetwork,self)._init_()               
        slf.layer1 = nn.sequential(nn.linear(in_dim,n.hidden_1),nn.Relu(True))  #nn.sequentials是把网络组合到一起
        slf.layer2 = nn.sequential(nn.linear(n.hidden_1,n.hidden_2),nn.Relu(True))
        slf.layer3 = nn.sequential(nn.linear(n.hidden_2,out_dim))
        
    def foward(self,x):              
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        return x

C添加BN(批量正则化)的FC

BN层要放在全连接层后面,激活函数前面。

class Batch_Net(nn.Module):                            
    def_init_(self,in_dim,n_hidden_1,n_hidden_2,out_dim):     
        super(Batch_Net,self)._init_()               
        slf.layer1 = nn.sequential(nn.linear(in_dim,n.hidden_1),nn.BtachNormld(n_hidden_1),nn.Relu(True))  #nn.sequentials是把网络组合到一起
        slf.layer2 = nn.sequential(nn.linear(n.hidden_1,n.hidden_2),,nn.BtachNormld(n_hidden_2),nn.Relu(True))
        slf.layer3 = nn.sequential(nn.linear(n.hidden_2,out_dim))
        
    def foward(self,x):              
        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        return x

网络定义结束,现在用minst数据集测试上述3种网络。

接下来进行数据预处理

import torch 
from torch import nn,optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import datasets,transforms

import net


#超参数
batch_size = 64
learning_rate = le-2
num_epoches = 20

#数据预处理
data_tf = transforms.Compose(       #将下面两个操作组合
     [transforms.ToTensor(),          #将图片转换为tensor
      transforms.Normalize([0.5],[0.5])])   #需要传入两个参数,一个是均值,一个是方差。减均值,除方差

#下载数据集
train_dataset = datasets.MNIST(
    root='./data',train = true, transform = data_tf, download = True)
    test_dataset = datasets.MNIST(root='./data',train=False,transform=data_tf)
    train_loader = DataLoader(train_dataset,batch_size=batch_size,shuffle=True)
    test_loader = Dataloader(test_dataset,batch_size=batch_size,shuffle=False)
#导入网络,定义损失函数和优化方法
model = net.simpleNet(28*28,300,100,10) #输入图片是28x28,两层分别为300,100,最后10类
if torch.cuda.is_avaiale():
    model = model.cuda()
criterion = nn.CrossEntropyLoss()      #使用交叉熵损失函数
optimizer = optim.SGD(model.parameters(),lr=learning_rate) #使用SGD优化


    
      

最后是模型评测

# 模型评估
model.eval()
eval_loss = 0
eval_acc = 0
for data in test_loader:
    img, label = data
    img = img.view(img.size(0), -1)
    if torch.cuda.is_available():
        img = img.cuda()
        label = label.cuda()
 
    out = model(img)
    loss = criterion(out, label)
    eval_loss += loss.data.item()*label.size(0)
    _, pred = torch.max(out, 1)
    num_correct = (pred == label).sum()
    eval_acc += num_correct.item()
print('Test Loss: {:.6f}, Acc: {:.6f}'.format(
    eval_loss / (len(test_dataset)),
    eval_acc / (len(test_dataset))
))
         

你可能感兴趣的:(人工智能,pytorch,神经网络,分类)