- 本文为365天深度学习训练营 中的学习记录博客
- 参考文章:365天深度学习训练营-第10周:数据增强(训练营内部成员可读)
- 原作者:K同学啊|接辅导、项目定制
第10周:数据增强
难度:夯实基础⭐⭐
语言:Python3、TensorFlow2
要求:
学会在代码中使用数据增强手段来提高acc
请探索更多的数据增强手段并记录
在本教程中,你将学会如何进行数据增强,并通过数据增强用少量数据达到非常非常棒的识别准确率。
我将展示两种数据增强方式,以及如何自定义数据增强方式并将其放到我们代码当中,两种数据增强方式如下:
● 将数据增强模块嵌入model中
● 在Dataset数据集中进行数据增强
我的环境:
● 语言环境:Python3.6.5
● 编译器:Jupyter Notebook
● 深度学习环境:TensorFlow2.4.1
● 数据地址:和鲸、百度网盘
import matplotlib.pyplot as plt
import numpy as np
#隐藏警告
import warnings
warnings.filterwarnings('ignore')
from tensorflow.keras import layers
import tensorflow as tf
gpus = tf.config.list_physical_devices("GPU")
if gpus:
tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用
tf.config.set_visible_devices([gpus[0]],"GPU")
# 打印显卡信息,确认GPU可用
print(gpus)
[]
data_dir = "./365-8-data/"
img_height = 224
img_width = 224
batch_size = 32
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.3,
subset="training",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 2380 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
validation_split=0.3,
subset="training",
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 3400 files belonging to 2 classes.
Using 2380 files for training.
由于原始数据集不包含测试集,因此需要创建一个。使用 tf.data.experimental.cardinality 确定验证集中有多少批次的数据,然后将其中的 20% 移至测试集。
val_batches = tf.data.experimental.cardinality(val_ds)
test_ds = val_ds.take(val_batches // 5)
val_ds = val_ds.skip(val_batches // 5)
print('Number of validation batches: %d' % tf.data.experimental.cardinality(val_ds))
print('Number of test batches: %d' % tf.data.experimental.cardinality(test_ds))
Number of validation batches: 60
Number of test batches: 15
class_names = train_ds.class_names
print(class_names)
['cat', 'dog']
AUTOTUNE = tf.data.AUTOTUNE
def preprocess_image(image,label):
return (image/255.0,label)
# 归一化处理
train_ds = train_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
val_ds = val_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
test_ds = test_ds.map(preprocess_image, num_parallel_calls=AUTOTUNE)
train_ds = train_ds.cache().prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
plt.figure(figsize=(15, 10)) # 图形的宽为15高为10
for images, labels in train_ds.take(1):
for i in range(8):
ax = plt.subplot(5, 8, i + 1)
plt.imshow(images[i])
plt.title(class_names[labels[i]])
plt.axis("off")
我们可以使用 tf.keras.layers.experimental.preprocessing.RandomFlip 与 tf.keras.layers.experimental.preprocessing.RandomRotation 进行数据增强
tf.keras.layers.experimental.preprocessing.RandomFlip:水平和垂直随机翻转每个图像。
tf.keras.layers.experimental.preprocessing.RandomRotation:随机旋转每个图像
data_augmentation = tf.keras.Sequential([
tf.keras.layers.experimental.preprocessing.RandomFlip("horizontal_and_vertical"),
tf.keras.layers.experimental.preprocessing.RandomRotation(0.2),
])
第一个层表示进行随机的水平和垂直翻转,而第二个层表示按照 0.2 的弧度值进行随机旋转
# Add the image to a batch.
image = tf.expand_dims(images[i], 0)
plt.figure(figsize=(8, 8))
for i in range(9):
augmented_image = data_augmentation(image)
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_image[0])
plt.axis("off")
WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.
WARNING:tensorflow:5 out of the last 5 calls to .f at 0x0000024253359B80> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.
WARNING:tensorflow:6 out of the last 6 calls to .f at 0x0000024253051E50> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.
WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.
方法一:将其嵌入model中
model = tf.keras.Sequential([
data_augmentation,
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
])
这样做的好处是:
● 数据增强这块的工作可以得到GPU的加速(如果你使用了GPU训练的话)
注意:只有在模型训练时(Model.fit)才会进行增强,在模型评估(Model.evaluate)以及预测(Model.predict)时并不会进行增强操作
方法二:在Dataset数据集中进行数据增强
batch_size = 32
AUTOTUNE = tf.data.AUTOTUNE
def prepare(ds):
ds = ds.map(lambda x, y: (data_augmentation(x, training=True), y), num_parallel_calls=AUTOTUNE)
return ds
train_ds = prepare(train_ds)
WARNING:tensorflow:Using a while_loop for converting RngReadAndSkip cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting Bitcast cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting StatelessRandomUniformV2 cause there is no registered converter for this op.
WARNING:tensorflow:Using a while_loop for converting ImageProjectiveTransformV3 cause there is no registered converter for this op.
model = tf.keras.Sequential([
layers.Conv2D(16, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(32, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Conv2D(64, 3, padding='same', activation='relu'),
layers.MaxPooling2D(),
layers.Flatten(),
layers.Dense(128, activation='relu'),
layers.Dense(len(class_names))
])
在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:
损失函数(loss):用于衡量模型在训练期间的准确率。
优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
评价函数(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
model.compile(optimizer='adam',
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=['accuracy'])
epochs=20
history = model.fit(
train_ds,
validation_data=val_ds,
epochs=epochs
)
Epoch 1/20
75/75 [==============================] - 22s 289ms/step - loss: 0.6459 - accuracy: 0.6958 - val_loss: 0.3205 - val_accuracy: 0.8668
Epoch 2/20
75/75 [==============================] - 23s 305ms/step - loss: 0.2935 - accuracy: 0.8765 - val_loss: 0.2129 - val_accuracy: 0.9179
Epoch 3/20
75/75 [==============================] - 23s 308ms/step - loss: 0.1988 - accuracy: 0.9277 - val_loss: 0.1838 - val_accuracy: 0.9226
Epoch 4/20
75/75 [==============================] - 23s 309ms/step - loss: 0.1624 - accuracy: 0.9349 - val_loss: 0.1245 - val_accuracy: 0.9511
Epoch 5/20
75/75 [==============================] - 24s 311ms/step - loss: 0.1316 - accuracy: 0.9462 - val_loss: 0.1120 - val_accuracy: 0.9611
Epoch 6/20
75/75 [==============================] - 23s 307ms/step - loss: 0.1291 - accuracy: 0.9475 - val_loss: 0.0893 - val_accuracy: 0.9637
Epoch 7/20
75/75 [==============================] - 23s 307ms/step - loss: 0.1027 - accuracy: 0.9618 - val_loss: 0.0999 - val_accuracy: 0.9658
Epoch 8/20
75/75 [==============================] - 23s 310ms/step - loss: 0.0852 - accuracy: 0.9664 - val_loss: 0.0733 - val_accuracy: 0.9758
Epoch 9/20
75/75 [==============================] - 23s 310ms/step - loss: 0.0835 - accuracy: 0.9697 - val_loss: 0.0658 - val_accuracy: 0.9742
Epoch 10/20
75/75 [==============================] - 24s 312ms/step - loss: 0.0678 - accuracy: 0.9727 - val_loss: 0.0517 - val_accuracy: 0.9789
Epoch 11/20
75/75 [==============================] - 23s 308ms/step - loss: 0.0694 - accuracy: 0.9773 - val_loss: 0.0680 - val_accuracy: 0.9737
Epoch 12/20
75/75 [==============================] - 24s 319ms/step - loss: 0.0822 - accuracy: 0.9718 - val_loss: 0.0669 - val_accuracy: 0.9789
Epoch 13/20
75/75 [==============================] - 24s 323ms/step - loss: 0.0552 - accuracy: 0.9811 - val_loss: 0.0460 - val_accuracy: 0.9842
Epoch 14/20
75/75 [==============================] - 24s 313ms/step - loss: 0.0706 - accuracy: 0.9735 - val_loss: 0.0485 - val_accuracy: 0.9811
Epoch 15/20
75/75 [==============================] - 23s 309ms/step - loss: 0.0545 - accuracy: 0.9807 - val_loss: 0.0798 - val_accuracy: 0.9747
Epoch 16/20
75/75 [==============================] - 24s 314ms/step - loss: 0.0610 - accuracy: 0.9840 - val_loss: 0.0470 - val_accuracy: 0.9842
Epoch 17/20
75/75 [==============================] - 25s 334ms/step - loss: 0.0642 - accuracy: 0.9761 - val_loss: 0.0315 - val_accuracy: 0.9884
Epoch 18/20
75/75 [==============================] - 27s 351ms/step - loss: 0.0549 - accuracy: 0.9811 - val_loss: 0.0644 - val_accuracy: 0.9768
Epoch 19/20
75/75 [==============================] - 25s 329ms/step - loss: 0.0464 - accuracy: 0.9836 - val_loss: 0.0428 - val_accuracy: 0.9816
Epoch 20/20
75/75 [==============================] - 23s 299ms/step - loss: 0.0550 - accuracy: 0.9819 - val_loss: 0.0347 - val_accuracy: 0.9874
loss, acc = model.evaluate(test_ds)
print("Accuracy", acc)
15/15 [==============================] - 1s 51ms/step - loss: 0.0375 - accuracy: 0.9854
Accuracy 0.9854166507720947
import random
# 这是大家可以自由发挥的一个地方
def aug_img(image):
seed = (random.randint(0,9), 0)
# 随机改变图像对比度
stateless_random_brightness = tf.image.stateless_random_contrast(image, lower=0.1, upper=1.0, seed=seed)
return stateless_random_brightness
image = tf.expand_dims(images[3]*255, 0)
print("Min and max pixel values:", image.numpy().min(), image.numpy().max())
Min and max pixel values: 2.4591687 241.47968
plt.figure(figsize=(8, 8))
for i in range(9):
augmented_image = aug_img(image)
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_image[0].numpy().astype("uint8"))
plt.axis("off")
#visualize(image, saturated)
image = tf.expand_dims(images[3]*255, 0)
saturated = tf.image.adjust_saturation(image, 3)
plt.figure(figsize=(8, 8))
for i in range(9):
augmented_image = aug_img(saturated)
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_image[0].numpy().astype("uint8"))
plt.axis("off")
#visualize(image, saturated)
image = tf.expand_dims(images[3]*255, 0)
bright = tf.image.adjust_brightness(image, 0.4)
plt.figure(figsize=(8, 8))
for i in range(9):
augmented_image = aug_img(bright )
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_image[0].numpy().astype("uint8"))
plt.axis("off")
image = tf.expand_dims(images[3]*255, 0)
cropped = tf.image.central_crop(image, central_fraction=0.5)
plt.figure(figsize=(8, 8))
for i in range(9):
augmented_image = aug_img(cropped)
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_image[0].numpy().astype("uint8"))
plt.axis("off")
image = tf.expand_dims(images[3]*255, 0)
rotated = tf.image.rot90(image)
plt.figure(figsize=(8, 8))
for i in range(9):
augmented_image = aug_img(rotated)
ax = plt.subplot(3, 3, i + 1)
plt.imshow(augmented_image[0].numpy().astype("uint8"))
plt.axis("off")
那么如何将自定义增强函数应用到我们数据上呢?
请参考上文的 preprocess_image 函数,将 aug_img 函数嵌入到 preprocess_image 函数中,在数据预处理时完成数据增强就OK啦。
import numpy as np
# 采用加载的模型(new_model)来看预测结果
plt.figure(figsize=(18, 3)) # 图形的宽为18高为5
plt.suptitle("The prediction")
for images, labels in val_ds.take(1):
for i in range(8):
ax = plt.subplot(1,8, i + 1)
# 显示图片
plt.imshow(images[i].numpy())
# 需要给图片增加一个维度
img_array = tf.expand_dims(images[i], 0)
# 使用模型预测图片中的人物
predictions = model.predict(img_array)
plt.title(class_names[np.argmax(predictions)])
plt.axis("off")
1/1 [==============================] - 0s 67ms/step
1/1 [==============================] - 0s 19ms/step
1/1 [==============================] - 0s 18ms/step
1/1 [==============================] - 0s 18ms/step
1/1 [==============================] - 0s 18ms/step
1/1 [==============================] - 0s 18ms/step
1/1 [==============================] - 0s 18ms/step
1/1 [==============================] - 0s 18ms/step
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-iKuMlgUM-1664521063999)(output_47_1.png)]
cd 365-8-data
C:\Users\jie liang\Downloads\365-8-data
#隐藏警告
import warnings
import os,PIL,pathlib
warnings.filterwarnings('ignore')
data_dir = "./test/"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*')))
print("图片总数为:",image_count)
图片总数为: 2
testbyme_ds = tf.keras.preprocessing.image_dataset_from_directory(
data_dir,
seed=12,
image_size=(img_height, img_width),
batch_size=batch_size)
Found 4 files belonging to 2 classes.
from PIL import Image
import numpy as np
plt.figure(figsize=(10, 4)) # 图形的宽为10高为5
for images, labels in testbyme_ds.take(1):
for i in range(4):
ax = plt.subplot(1,4, i + 1)
# 显示图片
plt.imshow(images[i].numpy().astype("uint8"))
# 需要给图片增加一个维度
img_array = tf.expand_dims(images[i], 0)
# 使用模型预测图片中的人物
predictions = model.predict(img_array)
plt.title(class_names[np.argmax(predictions)])
plt.axis("off")
1/1 [==============================] - 0s 17ms/step
1/1 [==============================] - 0s 17ms/step
1/1 [==============================] - 0s 18ms/step
1/1 [==============================] - 0s 19ms/step
plt.figure(figsize=(10, 4)) # 图形的宽为10高为5
for images, labels in testbyme_ds.take(1):
for i in range(4):
ax = plt.subplot(1, 4, i + 1)
plt.imshow(images[i].numpy().astype("uint8"))
plt.title(class_names[labels[i]])
plt.axis("off")
预测结果还是存在一些偏差