【PyTorch学习笔记_04】--- PyTorch(开始动手操作_案例1:手写字体识别)

手写字体识别的流程

  • 定义超参数(自己定义的参数)
  • 构建transforms, 主要是对图像做变换
  • 下载,加载数据集MNIST
  • 构建网络模型(重要,自己定义)
  • 定义训练方法
  • 定义测试方法
  • 开始训练模型,输出预测结果

数据集在资源下载里,有需自取

# -*- coding: utf-8 -*-
# @Time     : 2022/12/1 17:38

# 1.加载必要的库
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms

# 2.定义超参数(自己定义)
BATCH_SIZE = 16  # 每批处理的数据
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")  # 是否用GPU还是CPU训练
EPOCHS = 10  # 训练数据集的轮次

# 3.构建pipeline,对图像做处理   Compose: 组合
pipeline = transforms.Compose([
    transforms.ToTensor(),  # 将图片转换成tensor
    transforms.Normalize((0.1307,), (0.3081,))  # 正则化:参数使用官网提供的,模型出现过拟合现象时,降低模型复杂度
])

# 4.下载,加载数据
from torch.utils.data import DataLoader

# 下载数据集
train_set = datasets.MNIST("data", train=True, download=True, transform=pipeline)
test_set = datasets.MNIST("data", train=False, download=True, transform=pipeline)

# 加载数据集
train_loader = DataLoader(train_set, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(test_set, batch_size=BATCH_SIZE, shuffle=True)

# 插入代码,显示MNIST中的图片
with open("data/MNIST/raw/train-images-idx3-ubyte", "rb") as f:
    file = f.read()
image1 = [int(str(item).encode("ascii"), 16) for item in file[16: 16 + 784]]
print(image1)
import cv2
import numpy as np

image1_np = np.array(image1, dtype=np.uint8).reshape(28, 28, 1)  # 1代表一个通道
print(image1_np.shape)
cv2.imwrite("digit.jpg", image1_np)


# 5.构建网络模型
class Digit(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 10, (5, 5))  # 1:灰度图片的通道 10:输出通道  5:卷积核:滤波器
        self.conv2 = nn.Conv2d(10, 20, (3, 3))
        self.fc1 = nn.Linear(20 * 10 * 10, 500)  # 20*10*10:输入通道  500:输出通道
        self.fc2 = nn.Linear(500, 10)  # 500输入通道  10:输出通道

    def forward(self, x):
        input_size = x.size(0)  # x.size()格式:batch_size * 1 * 28 * 28
        x = self.conv1(x)  # 输入:batch*1*28*28   输出:batch*10*24*24(28-5+1=24)
        x = F.relu(x)  # 激活函数, 保持shape不变,输出:batch*10*24*24
        x = F.max_pool2d(x, 2, 2)  # 输入:batch*10*24*24   输出:batch*10*12*12   2:核  2:步长  池化层:对图片进行压缩(降采样)

        x = self.conv2(x)  # 输入:batch*10*12*12   输出:batch*20*10*10(12-3+1=10)
        x = F.relu(x)

        x = x.view(input_size, -1)  # view 拉平, -1 自动计算维度,20*10*10=2000

        x = self.fc1(x)  # 输入:batch * 2000   输出:batch*500
        x = F.relu(x)

        x = self.fc2(x)  # 输入:batch*500  输出:batch*10

        output = F.log_softmax(x, dim=1)  # dim=1 按行  计算分类后,每个数字的概率值

        return output


# 6.定义优化器
model = Digit().to(DEVICE)

optimizer = optim.Adam(model.parameters())  # 作用:更新参数


# 7.定义训练方法
def train_model(model, device, train_loader, optimizer, epoch):
    # 模型训练
    model.train()
    for batch_index, (data, target) in enumerate(train_loader):
        # 部署到device上
        data, target = data.to(device), target.to(device)
        # 梯度初始化为0
        optimizer.zero_grad()
        # 训练后的结果
        output = model(data)
        # 计算损失, 交叉熵损失
        loss = F.cross_entropy(output, target)
        # 反向传播
        loss.backward()
        # 参数优化
        optimizer.step()
        if batch_index % 3000 == 0:
            print('Train Epoch:{} \t Loss: {:.6f}'.format(epoch, loss.item()))


# 8.定义测试方法
def test_model(model, device, test_loader):
    # 模型验证
    model.eval()
    # 正确率
    correct = 0.0
    # 测试损失
    test_loss = 0.0
    with torch.no_grad():  # 不会计算梯度,也不会进行反向传播
        for data, target in test_loader:
            # 部署到device上
            data, target = data.to(device), target.to(device)
            # 测试数据
            output = model(data)
            # 计算测试损失
            test_loss += F.cross_entropy(output, target).item()
            # 找到概率值最大的下标
            pred = output.max(1, keepdim=True)[1]  # 值,索引
            # pred = torch.max(output, dim=1)
            # pred = output.argmax(dim=1)
            # 累计正确率
            correct += pred.eq(target.view_as(pred)).sum().item()
        test_loss /= len(test_loader.dataset)
        print("Test --- Average loss: {:.4f}, Accuracy: {:.3f}\n".format(test_loss,
                                                                         100.0 * correct / len(test_loader.dataset)))


# 9.调用 方法 7/8
for epoch in range(1, EPOCHS + 1):
    train_model(model, DEVICE, train_loader, optimizer, epoch)
    test_model(model, DEVICE, test_loader)

你可能感兴趣的:(PyTorch,pytorch,学习,深度学习)