SWQUENTIAL:使代码更加简洁
目标:搭建一个对CIFAR-10分类的简单神经网络
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear
class Peipei(nn.Module):
def __init__(self) -> None:
super(Peipei, self).__init__()
self.conv1 = Conv2d(3, 32, 5, padding=2, stride=1)
self.maxpool1 = MaxPool2d(2)
self.conv2 = Conv2d(32, 32, 5, padding=2)
self.maxpool2 = MaxPool2d(2)
self.conv3 = Conv2d(32, 64, 5, padding=2)
self.maxpool3 = MaxPool2d(2)
self.flatten = Flatten()
self.lin1 = Linear(1024, 64)
self.lin2 = Linear(64, 10)
def forward(self, x):
x = self.conv1(x)
x = self.maxpool1(x)
x = self.conv2(x)
x = self.maxpool2(x)
x = self.conv3(x)
x = self.maxpool3(x)
x = self.flatten(x)
x = self.lin1(x)
x = self.lin2(x)
return x
peipei = Peipei()
print(peipei)
input = torch.ones(64, 3, 32, 32)
output = peipei(input)
print(output.shape)
输出:
使用了Sequential
import torch
from torch import nn
from torch.nn import Conv2d, MaxPool2d, Flatten, Linear, Sequential
class Peipei(nn.Module):
def __init__(self) -> None:
self.model1 = Sequential(
Conv2d(3, 32, 5, padding=2, stride=1),
MaxPool2d(2),
Conv2d(32, 32, 5, padding=2),
MaxPool2d(2),
Conv2d(32, 64, 5, padding=2),
MaxPool2d(2),
Flatten(),
Linear(1024, 64),
Linear(64, 10)
)
def forward(self, x):
x = self.model1(x)
return x
peipei = Peipei()
print(peipei)
input = torch.ones(64, 3, 32, 32)
output = peipei(input)
print(output.shape)
writer = SummaryWriter("logs_seq")
writer.add_graph(peipei,input)
writer.close()
结果: