供应链供需预估-[时间序列]

供需预估时间序列

Coding 代码:https://github.com/Stormzudi/Recommender-System-with-TF_Pytorch/tree/main/rec_examples/Works

背景

​ 时序预测目标为虚拟资源未来使用量,虚拟资源库存数据是库存决策、时序预测前一天的各库存单元的库存水位,库存单元地理拓扑数据、产品拓扑数据为各库存单元所处的拓扑位置信息,库存单元权重信息代表了各库存单元在决策时的权重大小,权重大的库存单元,如果决策越有效,对评价指标的贡献将会更大;反之,降低评价分数的比重也会更大。

本次竞赛将聚焦在解决在补货单元纬度(最小库存管理单位),给定过去一段时间的历史需求数据、当前的库存数据、补货时长以及补货单元的相关信息(产品维度与地理纬度),由参赛者结合**“时序预测”、“运筹优化”等技术给出相应的库存管理决策**,在保证库存大概率满足需求不发生断供的情况下,降低库存率,达到降低库存成本的目的。

数据介绍

训练集包含以下内容: 虚拟资源使用量历史数据(demand_train.csv)、虚拟资源库存数据(inventory_info.csv)、地理拓扑数据(geography_tuopu.csv)、产品层级数据(product_tuopu.csv)、库存单元的权重信息(unit_weight.csv)。

供应链供需预估-[时间序列]_第1张图片
在这里插入图片描述
在这里插入图片描述
供应链供需预估-[时间序列]_第2张图片

1. 特征工程

  • 1.1 日期处理(天数补齐)
  • 1.2 处理geography_level、product_level多级别特征
  • 1.3 使用unit对qty滑窗,添加历史14天、7天滑窗特征
  • 1.4 使用geo, prod 添加过去14天、7天滑窗特征

1.1 日期处理

first_dt = pd.to_datetime("20180604")  
last_dt = pd.to_datetime("20210301")  # 用来限定使用的是历史数据而不是未来数据
start_dt = pd.to_datetime("20210301")  # 用来划定预测的针对test的起始时间
end_dt = pd.to_datetime("20210607")  # 预测需求的截止时间

demand_train_A["ts"] = demand_train_A["ts"].apply(lambda x: pd.to_datetime(x))
demand_train_A.drop(['Unnamed: 0'],axis=1,inplace=True)

demand_test_A["ts"] = demand_test_A["ts"].apply(lambda x: pd.to_datetime(x))
demand_test_A.drop(['Unnamed: 0'],axis=1,inplace=True)

dataset = pd.concat([demand_train_A, demand_test_A])

删除出现不正确的样本数据

# 删除qty中出现负值的样本,这部分样本数值不对,会影响最后标准化结果
dataset = dataset[~(dataset.qty < 0)]
print(np.isnan(dataset['qty']).any())
print(np.isinf(dataset['qty']).any())
dataset.info()

Int64Index: 345316 entries, 0 to 61935
Data columns (total 7 columns):
 #   Column           Non-Null Count   Dtype         
---  ------           --------------   -----         
 0   unit             345316 non-null  object        
 1   ts               345316 non-null  datetime64[ns]
 2   qty              345316 non-null  float64       
 3   geography_level  345316 non-null  object        
 4   geography        345316 non-null  object        
 5   product_level    345316 non-null  object        
 6   product          345316 non-null  object        
dtypes: datetime64[ns](1), float64(1), object(5)
memory usage: 21.1+ MB

查看所有样本的天数是否相同

# unit count
dataset.unit.value_counts()
9b8f48bacb1a63612f3a210ccc6286cc    1100
6ed4341ad9d2902873f3d9272f5f4df1    1100
4d3ca213b639541c5ba4cf8a69b1e1ed    1100
06531cd4188630ce2497cd9983aacf5e    1100
326cb18b045e5baefa90bbc2e8d52a32    1100
                                    ... 
7d9cbb373fddba4ce2cddcec96bccbeb     148
8ccf1c02bb050cb3fc4f13789cdfe235     147
e9abc1de6bd24d10ebe608959d0e5bac     141
5dbe225a546a680640eb5f7902b42cdd     141
12f892a6de3f9cf4411fb9db4fdd6691     138
Name: unit, Length: 632, dtype: int64

每个unit天数补齐

all_date = (dataset.ts.max()-dataset.ts.min()).days + 1
print("样本统计的天数:", all_date)  # Unit 的 天数

# 所有Unit都补全 all_date天的数据
cols = dataset.columns
trainalldate = pd.DataFrame()

for unit in dataset.unit.drop_duplicates():
    tmppd = pd.DataFrame(index=pd.date_range(first_dt, periods=all_date))
    tmppd['unit'] = unit
    tmppd = tmppd.reset_index()
    tmppd.columns = ['ts','unit']
    tmppd = pd.merge(left = tmppd,right = dataset[dataset.unit == unit],how = 'left',on = ['ts','unit']
        )
    #tmppd.fillna(value={'qty':-1},inplace=True)
    #tmppd.fillna(value={'qty':-1},method='bfill',inplace=True)
    trainalldate = pd.concat([trainalldate, tmppd])

样本统计的天数: 1100

9b8f48bacb1a63612f3a210ccc6286cc    1100
fbb83aefc6f5d6f6bc22ae3ee757d327    1100
c667afe1760f1e611bbf1429a4d324c4    1100
159cb1b7310e185dedda75e02d75344c    1100
c33ea1a813aed8ea5c19733d0729843d    1100
                                    ... 
380ad6e9d053693ab13f4da6940169ee    1100
d265d3620336f88bb6b49ac2e38c60ae    1100
e0bb0f05aa6823bddee312429820c1dc    1100
9a27f2c80de3ad06d7b57f5ec302c19e    1100
12f892a6de3f9cf4411fb9db4fdd6691    1100

数据展示:

  • 每天销量完整的unit: 9b8f48bacb1a63612f3a210ccc6286cc
# 完整的数据
sns.set(rc={'figure.figsize':(25,8)})
sns.lineplot(y =trainalldate[trainalldate.unit == '9b8f48bacb1a63612f3a210ccc6286cc'].qty,
             x =trainalldate[trainalldate.unit == '9b8f48bacb1a63612f3a210ccc6286cc'].ts)

供应链供需预估-[时间序列]_第3张图片

  • 存在天数补齐的unit: 7d9cbb373fddba4ce2cddcec96bccbeb
# 不完整的数据
sns.set(rc={'figure.figsize':(25,8)})
sns.lineplot(y =trainalldate[trainalldate.unit == '7d9cbb373fddba4ce2cddcec96bccbeb'].qty,
             x =trainalldate[trainalldate.unit == '7d9cbb373fddba4ce2cddcec96bccbeb'].ts)

供应链供需预估-[时间序列]_第4张图片

添加 year, month, day 日期特征

trainalldate['year'] = trainalldate['ts'].dt.year
trainalldate['month'] = trainalldate['ts'].dt.month
trainalldate['day'] = trainalldate['ts'].dt.day
trainalldate['week'] = trainalldate['ts'].dt.weekday
trainalldate.info()

Int64Index: 695200 entries, 0 to 1099
Data columns (total 11 columns):
 #   Column           Non-Null Count   Dtype         
---  ------           --------------   -----         
 0   ts               695200 non-null  datetime64[ns]
 1   unit             695200 non-null  object        
 2   qty              345316 non-null  float64       
 3   geography_level  345316 non-null  object        
 4   geography        345316 non-null  object        
 5   product_level    345316 non-null  object        
 6   product          345316 non-null  object        
 7   year             695200 non-null  int64         
 8   month            695200 non-null  int64         
 9   day              695200 non-null  int64         
 10  week             695200 non-null  int64         
dtypes: datetime64[ns](1), float64(1), int64(4), object(5)
memory usage: 63.6+ MB

1.2 处理geography_level、product_level多级别特征

trainalldate = trainalldate.drop(['geography_level','product_level'],axis = 1)
trainalldate = pd.merge(trainalldate, geo_topo, how='left', left_on = 'geography', right_on = 'geography_level_3')
trainalldate = pd.merge(trainalldate, product_topo, how='left', left_on = 'product', right_on = 'product_level_2')
trainalldate = trainalldate.drop(['geography','product'],axis = 1)
trainalldate.head()

进行label encoder,实现字符型 -> 数值型

# labelEncoder
encoder = ['geography_level_1','geography_level_2','geography_level_3','product_level_1','product_level_2']
# add feature
# unit_all = ['unit_geo', 'unit_pro', 'geo_pro']
unit_all = [ 'unit_pro', 'geo_pro']

# trainalldate["unit_geo"] = trainalldate.apply(lambda x: f"{x['unit']}_{x['geography_level_3']}", axis=1)
trainalldate["unit_pro"] = trainalldate.apply(lambda x: f"{x['unit']}_{x['product_level_2']}", axis=1)
trainalldate["geo_pro"] = trainalldate.apply(lambda x: f"{x['geography_level_3']}_{x['product_level_2']}", axis=1)

lbl = LabelEncoder()
for feat in encoder+unit_all:
    lbl.fit(trainalldate[feat])
    trainalldate[feat] = lbl.transform(trainalldate[feat])

添加每个样本的 训练权重特征: weight

# add the weight of each units
trainalldate = pd.merge(trainalldate, weight_A, left_on = 'unit', right_on = 'unit')
trainalldate = trainalldate.drop(['Unnamed: 0'],axis = 1)

对预测目标 qty 进行 label encoder 编码

# unit to unit_id
enc_unit = lbl.fit(trainalldate['unit'])
trainalldate['unit'] = enc_unit.transform(trainalldate['unit'])
trainalldate.head()

# unit id -> 反编码
# enc_unit.inverse_transform(trainalldate['unit'])

供应链供需预估-[时间序列]_第5张图片

存储 .pkl 文件

# save to pkl
# trainalldate.to_csv('../output/trainalldate.csv', index=False)
import pickle

with open("../output/trainalldate.pkl", 'wb') as fo: 
    pickle.dump(trainalldate, fo)

1.3 使用unit对qty滑窗,添加历史14天、7天滑窗特征

ref: https://zhuanlan.zhihu.com/p/101284491

with open("../output/trainalldate.pkl", 'rb') as fo:     # 读取pkl文件数据
    trainalldate = pickle.load(fo, encoding='bytes')

trainalldate["ts"] = trainalldate["ts"].apply(lambda x: pd.to_datetime(x))  # 转化成时间格式
print(trainalldate.shape)
trainalldate.head()
  • 历史14天7天滑窗
  • 历史第k天具体的值(历史第三天,历史第二天,昨天)
def qtyGetKvalue(data, k):
    '''
    k: the last k-ist value of data
    '''
    data = data.sort_values(
        by=['ts'], ascending=True).reset_index(drop=True)
    data = data.iloc[len(data) - k, -1] if len(data) >= k else np.NaN
    return data

def qtyNewFeature(df, ts = np.nan):
    newdataset = pd.DataFrame()
    
    timeline = pd.date_range(df.ts.min(), df.ts.max())
    for t in timeline:
        
        # today
        ts = df[df.ts == t]
        
        # last 14 day information ... 
        rdd = df[(df.ts >= t - datetime.timedelta(14)) & (df.ts < t)]
        
        last14max_dict = rdd.groupby('unit')['qty'].max().to_dict()
        last14min_dict = rdd.groupby('unit')['qty'].min().to_dict()
        last14std_dict = rdd.groupby('unit')['qty'].std().to_dict()
        last14mean_dict = rdd.groupby('unit')['qty'].mean().to_dict()
        last14median_dict = rdd.groupby('unit')['qty'].median().to_dict()
        last14sum_dict = rdd.groupby('unit')['qty'].sum().to_dict()
        
        ts['last14max'] = ts['unit'].map(last14max_dict)
        ts['last14min'] = ts['unit'].map(last14min_dict)
        ts['last14std'] = ts['unit'].map(last14std_dict)
        ts['last14mean'] = ts['unit'].map(last14mean_dict)
        ts['last14median'] = ts['unit'].map(last14median_dict)
        ts['last14sum'] = ts['unit'].map(last14sum_dict)
        
        
        # last 7 day information ..
        rdd = df[(df.ts >= t - datetime.timedelta(7)) & (df.ts < t)]
        
        last7max_dict = rdd.groupby('unit')['qty'].max().to_dict()
        last7min_dict = rdd.groupby('unit')['qty'].min().to_dict()
        last7std_dict = rdd.groupby('unit')['qty'].std().to_dict()
        last7mean_dict = rdd.groupby('unit')['qty'].mean().to_dict()
        last7median_dict = rdd.groupby('unit')['qty'].median().to_dict()
        last7sum_dict = rdd.groupby('unit')['qty'].sum().to_dict()
        
        ts['last7max'] = ts['unit'].map(last7max_dict)
        ts['last7min'] = ts['unit'].map(last7min_dict)
        ts['last7std'] = ts['unit'].map(last7std_dict)
        ts['last7mean'] = ts['unit'].map(last7mean_dict)
        ts['last7median'] = ts['unit'].map(last7median_dict)
        ts['last7sum'] = ts['unit'].map(last7sum_dict)
        
        
        # last 3 day information ...
        rdd = df[(df.ts >= t - datetime.timedelta(3)) & (df.ts < t)]
        
        last3max_dict = rdd.groupby('unit')['qty'].max().to_dict()
        last3min_dict = rdd.groupby('unit')['qty'].min().to_dict()
        last3std_dict = rdd.groupby('unit')['qty'].std().to_dict()
        last3mean_dict = rdd.groupby('unit')['qty'].mean().to_dict()
        last3median_dict = rdd.groupby('unit')['qty'].median().to_dict()
        last3sum_dict = rdd.groupby('unit')['qty'].sum().to_dict()
        last3value_dict = rdd.groupby('unit')['ts', 'qty'].apply(qtyGetKvalue, k=3).to_dict()
        
        ts['last3max'] = ts['unit'].map(last3max_dict)
        ts['last3min'] = ts['unit'].map(last3min_dict)
        ts['last3std'] = ts['unit'].map(last3std_dict)
        ts['last3mean'] = ts['unit'].map(last3mean_dict)
        ts['last3median'] = ts['unit'].map(last3median_dict)
        ts['last3sum'] = ts['unit'].map(last3sum_dict)
        ts['last3value'] = ts['unit'].map(last3value_dict)
        
        
        # last 1、2 day information ..
        rdd = df[(df.ts >= t - datetime.timedelta(1)) & (df.ts < t)]
        last1value_dict = rdd.groupby('unit')['qty'].sum().to_dict()
        ts['last1value'] = ts['unit'].map(last1value_dict)
        
        rdd = df[(df.ts >= t - datetime.timedelta(2)) & (df.ts < t)]
        last2mean_dict = rdd.groupby('unit')['qty'].mean().to_dict()
        last2sum_dict = rdd.groupby('unit')['qty'].sum().to_dict()
        last2value_dict = rdd.groupby('unit')['ts', 'qty'].apply(qtyGetKvalue, k=2).to_dict()
        
        ts['last2mean'] = ts['unit'].map(last2mean_dict)
        ts['last2sum'] = ts['unit'].map(last2sum_dict)
        ts['last2value'] = ts['unit'].map(last2value_dict)
        
        newdataset = pd.concat([newdataset, ts])
        if t.month == 1 and t.day == 1:
            print(t)
    return newdataset

run…

traindataset = qtyNewFeature(trainalldate)

Int64Index: 695200 entries, 0 to 695199
Data columns (total 38 columns):
 #   Column             Non-Null Count   Dtype         
---  ------             --------------   -----         
 0   ts                 695200 non-null  datetime64[ns]
 1   unit               695200 non-null  int64         
 2   qty                345316 non-null  float64       
 3   year               695200 non-null  int64         
 4   month              695200 non-null  int64         
 5   day                695200 non-null  int64         
 6   week               695200 non-null  int64         
 7   geography_level_1  695200 non-null  int64         
 8   geography_level_2  695200 non-null  int64         
 9   geography_level_3  695200 non-null  int64         
 10  product_level_1    695200 non-null  int64         
 11  product_level_2    695200 non-null  int64         
 12  unit_pro           695200 non-null  int64         
 13  geo_pro            695200 non-null  int64         
 14  weight             695200 non-null  float64       
 15  last14max          344717 non-null  float64       
 16  last14min          344717 non-null  float64       
 17  last14std          344085 non-null  float64       
 18  last14mean         344717 non-null  float64       
 19  last14median       344717 non-null  float64       
 20  last14sum          694568 non-null  float64       
 21  last7max           344712 non-null  float64       
 22  last7min           344712 non-null  float64       
 23  last7std           344068 non-null  float64       
 24  last7mean          344712 non-null  float64       
 25  last7median        344712 non-null  float64       
 26  last7sum           694568 non-null  float64       
 27  last3max           344695 non-null  float64       
 28  last3min           344695 non-null  float64       
 29  last3std           344051 non-null  float64       
 30  last3mean          344695 non-null  float64       
 31  last3median        344695 non-null  float64       
 32  last3sum           694568 non-null  float64       
 33  last3value         344684 non-null  object        
 34  last1value         694568 non-null  float64       
 35  last2mean          344690 non-null  float64       
 36  last2sum           694568 non-null  float64       
 37  last2value         344684 non-null  object        
dtypes: datetime64[ns](1), float64(23), int64(12), object(2)
memory usage: 206.9+ MB

1.4 使用geo, prod 添加过去14天、7天滑窗特征

def geoproNewFeature(df):
    newdataset = pd.DataFrame()
    
    timeline = pd.date_range(df.ts.min(), df.ts.max())
    for t in timeline:
        ts = df[df.ts == t]
        rdd = df[(df.ts >= t - datetime.timedelta(14)) & (df.ts < t)]
        
        # grouby for calculate mean&median
        geo1mean14_dict = rdd.groupby('geography_level_1')['qty'].mean().to_dict()
        geo2mean14_dict = rdd.groupby('geography_level_2')['qty'].mean().to_dict()
        geo3mean14_dict = rdd.groupby('geography_level_3')['qty'].mean().to_dict()
        pro1mean14_dict = rdd.groupby('product_level_1')['qty'].mean().to_dict()
        pro2mean14_dict = rdd.groupby('product_level_2')['qty'].mean().to_dict()
        geo1median14_dict = rdd.groupby('geography_level_1')['qty'].median().to_dict()
        geo2median14_dict = rdd.groupby('geography_level_2')['qty'].median().to_dict()
        geo3median14_dict = rdd.groupby('geography_level_3')['qty'].median().to_dict()
        pro1median14_dict = rdd.groupby('product_level_1')['qty'].median().to_dict()
        pro2median14_dict = rdd.groupby('product_level_2')['qty'].median().to_dict()
        
        # map to df
        ts['geo1mean14'] = ts['geography_level_1'].map(geo1mean14_dict)
        ts['geo2mean14'] = ts['geography_level_2'].map(geo2mean14_dict)
        ts['geo3mean14'] = ts['geography_level_3'].map(geo3mean14_dict)
        ts['pro1mean14'] = ts['product_level_1'].map(pro1mean14_dict)
        ts['pro2mean14'] = ts['product_level_2'].map(pro2mean14_dict)
        
        ts['geo1median14'] = ts['geography_level_1'].map(geo1median14_dict)
        ts['geo2median14'] = ts['geography_level_2'].map(geo2median14_dict)
        ts['geo3median14'] = ts['geography_level_3'].map(geo3median14_dict)
        ts['pro1median14'] = ts['product_level_1'].map(pro1median14_dict)
        ts['pro2median14'] = ts['product_level_2'].map(pro2median14_dict)
        

添加geo和prod下的 滑窗特征:

traindatasetall = geoproNewFeature(traindataset)
traindatasetall.info()

Int64Index: 695200 entries, 0 to 695199
Data columns (total 48 columns):
 #   Column             Non-Null Count   Dtype         
---  ------             --------------   -----         
 0   ts                 695200 non-null  datetime64[ns]
 1   unit               695200 non-null  int64         
 2   qty                345316 non-null  float64       
 3   year               695200 non-null  int64         
 4   month              695200 non-null  int64         
 5   day                695200 non-null  int64         
 6   week               695200 non-null  int64         
 7   geography_level_1  695200 non-null  int64         
 8   geography_level_2  695200 non-null  int64         
 9   geography_level_3  695200 non-null  int64         
 10  product_level_1    695200 non-null  int64         
 11  product_level_2    695200 non-null  int64         
 12  unit_pro           695200 non-null  int64         
 13  geo_pro            695200 non-null  int64         
 14  weight             695200 non-null  float64       
 15  last14max          344717 non-null  float64       
 16  last14min          344717 non-null  float64       
 17  last14std          344085 non-null  float64       
 18  last14mean         344717 non-null  float64       
 19  last14median       344717 non-null  float64       
 20  last14sum          694568 non-null  float64       
 21  last7max           344712 non-null  float64       
 22  last7min           344712 non-null  float64       
 23  last7std           344068 non-null  float64       
 24  last7mean          344712 non-null  float64       
 25  last7median        344712 non-null  float64       
 26  last7sum           694568 non-null  float64       
 27  last3max           344695 non-null  float64       
 28  last3min           344695 non-null  float64       
 29  last3std           344051 non-null  float64       
 30  last3mean          344695 non-null  float64       
 31  last3median        344695 non-null  float64       
 32  last3sum           694568 non-null  float64       
 33  last3value         344684 non-null  object        
 34  last1value         694568 non-null  float64       
 35  last2mean          344690 non-null  float64       
 36  last2sum           694568 non-null  float64       
 37  last2value         344684 non-null  object        
 38  geo1mean14         345294 non-null  float64       
 39  geo2mean14         345267 non-null  float64       
 40  geo3mean14         345198 non-null  float64       
 41  pro1mean14         344949 non-null  float64       
 42  pro2mean14         344946 non-null  float64       
 43  geo1median14       345294 non-null  float64       
 44  geo2median14       345267 non-null  float64       
 45  geo3median14       345198 non-null  float64       
 46  pro1median14       344949 non-null  float64       
 47  pro2median14       344946 non-null  float64       
dtypes: datetime64[ns](1), float64(33), int64(12), object(2)
memory usage: 259.9+ MB

2. 数据分析

  • 2.1 日期与库存销量qty之间的关系
  • 2.2 weight 特征与其他指标之间的分析
  • 2.3 geography和product与库存销量qty之间的关系

2.1 日期与库存销量qty之间的关系

  • 1.哪月库存销量最佳, 随着日期变化,库存均销量的变化趋势是怎么样的?
  • 2.一个月中哪个天的库存销量是最好的?
# 统计2020-1-1 至 2021-1-1 日之间销量情况
l = pd.to_datetime("20200101")  
r = pd.to_datetime("20210101")
rdd = trainalldate[(trainalldate.ts >= l) & (trainalldate.ts < r)]
rdd.groupby('month')['qty'].mean().plot.line()
rdd.groupby('month')['qty'].mean()
month
1     7192.430061
2     7314.206949
3     7604.787311
4     7816.873783
5     7654.873306
6     7414.775432
7     7338.711291
8     7143.824906
9     6443.558908
10    6322.372180
11    6342.427577
12    6338.860666
Name: qty, dtype: float64

供应链供需预估-[时间序列]_第6张图片

在一年中的4月各个unit的 销量最佳。

rdd.groupby('week')['qty'].mean().plot.line()
rdd.groupby('week')['qty'].mean()
week
0    6998.214075
1    6987.379158
2    6992.602257
3    6990.622916
4    7007.556214
5    7002.836863
6    6995.769412
Name: qty, dtype: float64

供应链供需预估-[时间序列]_第7张图片

rdd.groupby('day')['qty'].mean().plot.line()
rdd.groupby('day')['qty'].mean()

供应链供需预估-[时间序列]_第8张图片

# the high day is 8
# count the 8 of all year
daysYear = pd.Series(pd.date_range(start=l, end=r))
weeks = list(map(lambda x:x.day_name(), filter(lambda x:x.day == 8, daysYear)))
print(list(filter(lambda x:x.day == 8, daysYear)))
print(weeks)
import collections
a = collections.Counter(weeks)
plt.bar(*zip(*a.items()))
plt.show()

2.2 weight 特征分析

# weight num and unit
trainalldate.groupby('weight')['unit'].count()
weight
0.001    139700
0.002     62700
0.003     52800
0.004     31900
0.005     31900
          ...  
0.325      1100
0.379      1100
0.384      1100
0.404      1100
0.943      1100
Name: unit, Length: 131, dtype: int64

总共有131种不同的weight,其中最多weight == 0.001

# 统计出不同weight下,qty库存使用量的均值
trainalldate.groupby('weight')['qty'].mean().plot.bar()

供应链供需预估-[时间序列]_第9张图片

2.3 geography和product与库存销量qty之间的关系

3. 模型训练

  • 1 Xgboost
  • 2.LightGBM
  • 3.autox
  • 4.JDCross
  • ref
    https://github.com/PENGZhaoqing/TimeSeriesPrediction
    https://github.com/gabrielpreda/Kaggle/blob/master/SantanderCustomerTransactionPrediction/starter-code-saving-and-loading-lgb-xgb-cb.py

3.1 xgboost

# load traindataset
with open("../output/traindataset.pkl", 'rb') as fo:     # 读取pkl文件数据
    traindataset = pickle.load(fo, encoding='bytes')

traindataset["ts"] = traindataset["ts"].apply(lambda x: pd.to_datetime(x))
print(traindataset.shape)
traindataset.head()
# features
sparse_features = ['unit', 'year', 'month', 'day', 'week', 'geography_level_1', 'geography_level_2', 'geography_level_3', 
                   'product_level_1', 'product_level_2', 'unit_pro', 'geo_pro']
dense_features = ['weight',
       'last14max', 'last14min', 'last14std', 'last14mean', 'last14median',
       'last14sum', 'last7max', 'last7min', 'last7std', 'last7mean',
       'last7median', 'last7sum', 'last3max', 'last3min', 'last3std',
       'last3mean', 'last3median', 'last3sum', 'last3value', 'last1value', 'last2mean',
       'last2sum', 'last2value', 'geo1mean14', 'geo2mean14', 'geo3mean14', 'pro1mean14',
       'pro2mean14', 'geo1median14', 'geo2median14', 'geo3median14',
       'pro1median14', 'pro2median14']

target = ['qty']
# traindataset[:100].loc[~traindataset[:100]['geo1mean14'].isnull()]
# traindataset[np.isnan(traindataset['qty'].values)]
# traindataset['qty'][np.isinf(traindataset['qty'])] = 0.0 

# 替换空值,和选择大于0的数据
traindataset = traindataset.dropna(subset=["qty"])
traindataset = traindataset[traindataset["qty"] >= 0]
traindataset.shape

(345316, 48)

判断是否存在 空值和 inf 异常值。

print(np.isnan(traindataset['qty']).any())
print(np.isinf(traindataset['qty']).any())

qty 原始值过大,进行log转化。

# qty 进行转化
plt.figure(figsize=(18, 10))
fig, axes = plt.subplots(nrows=2, ncols=1)
traindataset['qty'].hist(bins=100, ax=axes[0])
traindataset['qty'] = np.log(traindataset['qty'] + 1)  # 
traindataset['qty'].hist(bins=100, ax=axes[1])
plt.show()

供应链供需预估-[时间序列]_第10张图片

## 3.1 xgboost
traindataset = traindataset.dropna(axis=0, how='any')
train = traindataset[traindataset.ts <= pd.to_datetime("20210301")]
test = traindataset[traindataset.ts > pd.to_datetime("20210301")]

X_train, X_test, y_train, y_test = train[sparse_features + dense_features], test[sparse_features + dense_features], train[target], test[target]
print('The shape of X_train:{}'.format(X_train.shape))
print('The shape of X_test:{}'.format(X_test.shape))

The shape of X_train:(274740, 46)

The shape of X_test:(68685, 46)

params = {
    'learning_rate': 0.25,
    'n_estimators': 30,
    'subsample': 0.8,
    'colsample_bytree': 0.6,
    'max_depth': 12,
    'min_child_weight': 1,
    'reg_alpha': 0,
    'gamma': 0
}

# dtrain = xgb.DMatrix(X, label=y, feature_names=x)

bst = xgb.XGBRegressor(learning_rate=params['learning_rate'], n_estimators=params['n_estimators'],
                             booster='gbtree', objective='reg:linear', n_jobs=-1, subsample=params['subsample'],
                             colsample_bytree=params['colsample_bytree'], random_state=0,
                             max_depth=params['max_depth'], gamma=params['gamma'],
                             min_child_weight=params['min_child_weight'], reg_alpha=params['reg_alpha'])
bst.fit(X_train.values, y_train.values)
[15:50:29] WARNING: ../src/objective/regression_obj.cu:203: reg:linear is now deprecated in favor of reg:squarederror.

[134]:

XGBRegressor(base_score=0.5, booster='gbtree', callbacks=None,
             colsample_bylevel=1, colsample_bynode=1, colsample_bytree=0.6,
             early_stopping_rounds=None, enable_categorical=False,
             eval_metric=None, gamma=0, gpu_id=-1, grow_policy='depthwise',
             importance_type=None, interaction_constraints='',
             learning_rate=0.25, max_bin=256, max_cat_to_onehot=4,
             max_delta_step=0, max_depth=12, max_leaves=0, min_child_weight=1,
             missing=nan, monotone_constraints='()', n_estimators=30, n_jobs=-1,
             num_parallel_tree=1, objective='reg:linear', predictor='auto',
             random_state=0, reg_alpha=0, ...)

查看预测效果

pre = bst.predict(X_test.values)

# def mape(y_true, y_pred):
#     return np.mean(np.abs((y_pred - y_true) / y_true)) * 100

# mape = mape(np.expm1(y_test.reshape(-1)), np.expm1(pre))
# print("MAPE is: {}".format(mape))

from sklearn.metrics import mean_absolute_error, mean_squared_error
mae_norm = mean_absolute_error(y_test.values, pre)  # 归一化后的值
mae = mean_absolute_error(np.expm1(y_test.values), np.expm1(pre))


rmse = np.sqrt(mean_squared_error(np.expm1(y_test.values), np.expm1(pre)))

print("mae:",mae_norm)
print("mae:",mae)
print("rmse:",rmse)
mae: 0.0169853220505046
mae: 56.53049660927482
rmse: 232.05474656993192

树模型输出特征值的重要性图

def get_xgb_feat_importances(clf, train_features):

    if isinstance(clf, xgb.XGBModel):
        # clf has been created by calling
        # xgb.XGBClassifier.fit() or xgb.XGBRegressor().fit()
        fscore = clf.get_booster().get_fscore()
    else:
        # clf has been created by calling xgb.train.
        # Thus, clf is an instance of xgb.Booster.
        fscore = clf.get_fscore()
    
    feat_importances = []
    
    for feat, value in zip(fscore.keys(), train_features):
        feat_importances.append({'Feature': value, 'Importance': fscore[feat]})
    
    # for ft, score in fscore.items():
    #     feat_importances.append({'Feature': ft, 'Importance': score})
    feat_importances = pd.DataFrame(feat_importances)
    feat_importances = feat_importances.sort_values(
        by='Importance', ascending=False).reset_index(drop=True)
    # Divide the importances by the sum of all importances
    # to get relative importances. By using relative importances
    # the sum of all importances will equal to 1, i.e.,
    # np.sum(feat_importances['importance']) == 1
    feat_importances['Importance'] /= feat_importances['Importance'].sum()
    # Print the most important features and their importances
    return dict(zip(fscore.keys(), train_features)), feat_importances


f, res = get_xgb_feat_importances(bst, sparse_features + dense_features)

plt.figure(figsize=(20, 10))
plt.barh(range(len(res)), res['Importance'][::-1], tick_label=res['Feature'][::-1])
plt.show()

供应链供需预估-[时间序列]_第11张图片

查看预测效果

# plot the model result

data = X_test.copy()
data['qty'] = np.expm1(y_test)
data['pre_qty'] = np.expm1(pre)

def date_trend(data):
    val = data.sort_values(
        by=['year', 'month', 'day'], ascending=True).reset_index(drop=True)
    
    val["date"] = val.apply(lambda x: f"{int(x['year'])}-{int(x['month'])}-{int(x['day'])}", axis=1)
    val["date"] = val["date"].apply(lambda x: pd.to_datetime(x))

    if val.unit.values[0] in [497, 81, 9, 285, 554, 315]:
        plt.figure(figsize=(15, 6))
        l1 = plt.plot(val.date, val['qty'], 'o', label='raw_data')
        l2 = plt.plot(val.date, val['pre_qty'], 'ro', label="pre_data")
        plt.legend()
        # plt.plot(val.date, val['qty'], 'o', val.date, val['pre_qty'], 'ro')
        plt.title(str(val.unit.values[0]))
        plt.show()
    

data.groupby('unit').apply(date_trend)

供应链供需预估-[时间序列]_第12张图片
供应链供需预估-[时间序列]_第13张图片

3.2 Lightgbm

import lightgbm as lgb
from lightgbm import plot_importance


# 构造训练集
dtrain = lgb.Dataset(X_train,y_train)
dtest = lgb.Dataset(X_test,y_test)

params = {
    'booster': 'gbtree',
    'objective': 'regression',
    'num_leaves': 31,
    'subsample': 0.8,
    'bagging_freq': 1,
    'feature_fraction ': 0.8,
    'slient': 1,
    'learning_rate ': 0.1,
    'seed': 0
}

num_rounds = 500

# xgboost模型训练
lgbmodel = lgb.train(params,dtrain, num_rounds, valid_sets=[dtrain, dtest], 
                  verbose_eval=100, early_stopping_rounds=100)

# 对测试集进行预测
pre_lgb = lgbmodel.predict(X_test)

评估模型效果

# def mape(y_true, y_pred):
#     return np.mean(np.abs((y_pred - y_true) / y_true)) * 100

# mape = mape(np.expm1(y_test.reshape(-1)), np.expm1(pre))
# print("MAPE is: {}".format(mape))

from sklearn.metrics import mean_absolute_error, mean_squared_error
mae_norm = mean_absolute_error(y_test.values, pre_lgb)  # 归一化后的值
mae = mean_absolute_error(np.expm1(y_test.values), np.expm1(pre_lgb))


rmse = np.sqrt(mean_squared_error(np.expm1(y_test.values), np.expm1(pre_lgb)))

print("mae:",mae_norm)
print("mae:",mae)
print("rmse:",rmse)

mae: 0.018923955297323495
mae: 81.15812502488455
rmse: 307.6095513832293

你可能感兴趣的:(数据挖掘,数据处理与分析,python,人工智能,时序数据库)