神经网络架构搜索——可微分搜索(PC-DARTS)

神经网络架构搜索——可微分搜索(PC-DARTS)

      • 动机
      • 贡献点
      • 方法
        • 部分通道连接(Partial Channel Connection)
        • 边缘正规化(Edge Normalization)
      • 实验结果
        • CIFAR-10
        • ImageNet
        • 消融实验
      • 参考

华为发表在ICLR 2020上的NAS工作,针对现有DARTS模型训练时需要 Large memory and computing 问题,提出了 Partial Channel ConnectionEdge Normalization 的技术,在搜索过程中更快更好

  • aper: PC-DARTS: Partial Channel Connections for Memory-Efficient Differentiable Architecture Search
  • Code: https://github.com/yuhuixu1993/PC-DARTS

动机

接着上面的P-DARTS来看,尽管上面可以在17 cells情况下单卡完成搜索,但妥协牺牲的是operation的数量,这明显不是个优秀的方案,故此文 Partially-Connected DARTS,致力于大规模节省计算量和memory,从而进行快速且大batchsize的搜索。

贡献点

  • 设计了基于channel的sampling机制,故每次只有小部分1/K channel的node来进行operation search,减少了(K-1)/K 的memory,故batchsize可增大为K倍。

  • 为了解决上述channel采样导致的不稳定性,提出了 边缘正规化(edge normalization),在搜索时通过学习edge-level超参来减少不确定性。

方法

神经网络架构搜索——可微分搜索(PC-DARTS)_第1张图片

部分通道连接(Partial Channel Connection)

如上图的上半部分,在所有的通道数K里随机采样 1/K 出来,进行 operation search,然后operation 混合后的结果与剩下的 (K-1)/K 通道数进行 concat,公式表示如下:

f i , j P C ( x i ; S i , j ) = ∑ o ∈ O exp ⁡ { α i , j o } ∑ o ′ ∈ O exp ⁡ { α i , j o ′ } ⋅ o ( S i , j ∗ x i ) + ( 1 − S i , j ) ∗ x i f_{i, j}^{\mathrm{PC}}\left(\mathbf{x}_{i} ; \mathbf{S}_{i, j}\right)=\sum_{o \in \mathcal{O}} \frac{\exp \left\{\alpha_{i, j}^{o}\right\}}{\sum_{o^{\prime} \in \mathcal{O}} \exp \left\{\alpha_{i, j}^{o^{\prime}}\right\}} \cdot o\left(\mathbf{S}_{i, j} * \mathbf{x}_{i}\right)+\left(1-\mathbf{S}_{i, j}\right) * \mathbf{x}_{i} fi,jPC(xi;Si,j)=oOoOexp{αi,jo}exp{αi,jo}o(Si,jxi)+(1Si,j)xi

上述的“部分通道连接”操作会带来一些正副作用:

  • 正作用:能减少operations选择时的biases,弱化无参的子操作(Pooling, Skip-Connect)的作用。文中3.3节有这么一句话:当proxy dataset非常难时(即ImageNet),往往一开始都会累积很大权重在weight-free operation,故制约了其在ImageNet上直接搜索的性能。
  • 副作用:由于网络架构在不同iterations优化是基于随机采样的channels,故最优的edge连通性将会不稳定。
class MixedOp(nn.Module):

  def __init__(self, C, stride):
    super(MixedOp, self).__init__()
    self._ops = nn.ModuleList()
    self.mp = nn.MaxPool2d(2,2)

    for primitive in PRIMITIVES:
      op = OPS[primitive](C //4, stride, False)
      if 'pool' in primitive:
        op = nn.Sequential(op, nn.BatchNorm2d(C //4, affine=False))
      self._ops.append(op)

  def forward(self, x, weights):
    #channel proportion k=4(实验证明1/4性能最佳)
    dim_2 = x.shape[1]
    xtemp = x[ : , :  dim_2//4, :, :] # channel 0到1/4的输入
    xtemp2 = x[ : ,  dim_2//4:, :, :] # channel 1/4到1的输入
    temp1 = sum(w * op(xtemp) for w, op in zip(weights, self._ops)) # 仅1/4数据参与ops运算
    #reduction cell 需要在concat之前添加pooling操作
    if temp1.shape[2] == x.shape[2]:
      ans = torch.cat([temp1,xtemp2],dim=1)
    else:
      ans = torch.cat([temp1,self.mp(xtemp2)], dim=1)
    ans = channel_shuffle(ans,4) # 一个cell完成后对channel进行随机打散,为下个cell做采样准备
    #ans = torch.cat([ans[ : ,  dim_2//4:, :, :],ans[ : , :  dim_2//4, :, :]],dim=1)
    #except channe shuffle, channel shift also works
    return ans

def channel_shuffle(x, groups):
    batchsize, num_channels, height, width = x.data.size()

    channels_per_group = num_channels // groups
    
    # reshape [batchsize, num_channels, height, width] 
    # -> [batchsize, groups,channels_per_group, height, width]
    x = x.view(batchsize, groups, 
        channels_per_group, height, width)
		# 打乱channel的操作(借助transpose后数据块的stride发生变化,然后将其连续化)
    # 参考:https://www.cnblogs.com/aoru45/p/10974508.html
    x = torch.transpose(x, 1, 2).contiguous()

    # flatten
    x = x.view(batchsize, -1, height, width)

    return x

边缘正规化(Edge Normalization)

为了克服部分通道连接这个副作用,提出边缘正规化(见上图的下半部分),即把多个PC后的node输入softmax权值叠加,类attention机制

x j P C = ∑ o ∈ O exp ⁡ { α i , j o } ∑ o ′ ∈ O exp ⁡ { α i , j o ′ } ⋅ o ( S i , j ∗ x i ) + ( 1 − S i , j ) ∗ x i \mathbf{x}_{j}^{\mathrm{PC}}=\sum_{o \in \mathcal{O}} \frac{\exp \left\{\alpha_{i, j}^{o}\right\}}{\sum_{o^{\prime} \in \mathcal{O}} \exp \left\{\alpha_{i, j}^{o^{\prime}}\right\}} \cdot o\left(\mathbf{S}_{i, j} * \mathbf{x}_{i}\right)+\left(1-\mathbf{S}_{i, j}\right) * \mathbf{x}_{i} xjPC=oOoOexp{αi,jo}exp{αi,jo}o(Si,jxi)+(1Si,j)xi

x j P C = ∑ i < j exp ⁡ { β i , j } ∑ i ′ < j exp ⁡ { β i ′ , j } ⋅ f i , j ( x i ) \mathbf{x}_{j}^{\mathrm{PC}}=\sum_{i < j} \frac{\exp \left\{\beta_{i, j}\right\}}{\sum_{i^{\prime} < j} \exp \left\{\beta_{i^{\prime}, j}\right\}} \cdot f_{i, j}\left(\mathbf{x}_{i}\right) xjPC=i<ji<jexp{βi,j}exp{βi,j}fi,j(xi)

由于edge 超参 β i , j \beta_{i, j} βi,j 在训练阶段是共享的,故学习到的网络更少依赖于不同iterations间的采样到的channels,使得网络搜索过程更稳定。当网络搜索完毕,node间的operation选择由operation-level和edge-level的参数相乘后共同决定。

weights_normal = [F.softmax(alpha, dim=-1) for alpha in alpha_normal]
weights_reduce = [F.softmax(alpha, dim=-1) for alpha in alpha_reduce]
weights_edge_normal = [F.softmax(beta, dim=0) for beta in beta_normal]
weights_edge_reduce = [F.softmax(beta, dim=0) for beta in beta_reduce]


def parse(alpha, beta, k):
		...  
    for edges, w in zip(alpha, beta):
        edge_max, primitive_indices = torch.topk((w.view(-1, 1) * edges)[:, :-1], 1) # ignore 'none'
    ...

实验结果

CIFAR-10

神经网络架构搜索——可微分搜索(PC-DARTS)_第2张图片

ImageNet

神经网络架构搜索——可微分搜索(PC-DARTS)_第3张图片

消融实验

神经网络架构搜索——可微分搜索(PC-DARTS)_第4张图片

参考

[1] Yuhui Xu et al. ,PC-DARTS: Partial Channel Connections for Memory-Efficient Differentiable Architecture Search

[2] https://zhuanlan.zhihu.com/p/73740783


更多内容关注微信公众号【AI异构】

你可能感兴趣的:(神经网络架构搜索(NAS),深度学习,神经网络,NAS)