Java课程设计作业基于OpenCV的人脸识别项目

前言

本文将展示利用OpenCV和Java完成人脸识别等功能


一、效果图

Java课程设计作业基于OpenCV的人脸识别项目_第1张图片

二、准备工作

1.需要jdk1.8

2.导入opencv-320.jar
Java课程设计作业基于OpenCV的人脸识别项目_第2张图片
3.找到需要的训练文件
Java课程设计作业基于OpenCV的人脸识别项目_第3张图片

三、使用步骤

1.示例代码

代码如下(示例):

import org.opencv.core.Point;
import org.opencv.core.*;
import org.opencv.imgproc.Imgproc;
import org.opencv.objdetect.CascadeClassifier;
import org.opencv.videoio.VideoCapture;
import org.opencv.videoio.Videoio;
import utils.utilImage;
import javax.swing.*;
import java.awt.*;
import java.awt.image.BufferedImage;
import java.util.HashMap;
import java.util.Map;


public class CaptureBasic extends JPanel{
    Mat capImg;
    BufferedImage mImg;
    VideoCapture capture;
    JFrame frame;
    MatOfRect matOfRect;
    CaptureBasic panel;


    Map<String,CascadeClassifier>Cascade=new HashMap<>();

    static{
        System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
    }

    public CaptureBasic(){}

    
    public CaptureBasic(Map<String,String> filename){
        //开启摄像头
        capture=new VideoCapture(0);
        //导入训练文件
        for (Map.Entry<String,String>map:filename.entrySet()){
            Cascade.put(map.getKey(),new CascadeClassifier(map.getValue()));
        }




        //进行脸部检查
        capImg = new Mat();

        matOfRect=new MatOfRect();
    }

    @Override
    public void paintComponent(Graphics g) {
        if (mImg != null) {
            g.drawImage(mImg, 0, 0, mImg.getWidth(), mImg.getHeight(), this);
        }
    }

    public void TrackFace() {
        try{
            int height = (int)capture.get(Videoio.CAP_PROP_FRAME_HEIGHT)*100;
            int width = (int)capture.get(Videoio.CAP_PROP_FRAME_WIDTH)*100;
            if(height==0||width==0){
                throw new Exception("camera not found!");
            }
            panel=new CaptureBasic();

            

            //显示窗口
            frame=new JFrame("camera");
            frame.setDefaultCloseOperation(WindowConstants.DISPOSE_ON_CLOSE);
            frame.setContentPane(panel);
            frame.setVisible(true);
            frame.setSize(width+frame.getInsets().left+frame.getInsets().right,
                    height+frame.getInsets().top+frame.getInsets().bottom);




                while (frame.isDisplayable()){
                    capture.read(capImg);


                    for (Map.Entry<String,CascadeClassifier>m:Cascade.entrySet()){
                        m.getValue().detectMultiScale(capImg,matOfRect);
                        for (Rect rect:matOfRect.toArray()
                        ) {
                            Imgproc.rectangle(capImg,new Point(rect.x,rect.y),new Point(rect.x+rect.width,rect.y+rect.height),new Scalar(0,255,0),2);
                            Imgproc.putText(capImg,m.getKey(),new Point(rect.x,rect.y),2,1,new Scalar(0,255,0));
                        }
                    }



                    panel.mImg = utilImage.mat2BI(capImg);
                    panel.repaint();

                }








        }catch(Exception e){
           e.printStackTrace();
        }finally{
            capture.release();
            capImg.release();
            frame.dispose();
            System.out.println("--done--");
        }

    }




    public static void main(String[] args) {
        Map<String,String>map=new HashMap<>();
        map.put("face","model/haarcascade_frontalface_default.xml");
        map.put("eye","model/haarcascade_righteye_2splits.xml");
        CaptureBasic captureBasic = new CaptureBasic(map);
        captureBasic.TrackFace();
    }
}

代码如下(示例):

import org.opencv.core.Mat;
import java.awt.image.BufferedImage;
public class utilImage {
    //Mat转BufferedImage
    public static BufferedImage mat2BI(Mat mat) {
        int dataSize = mat.cols() * mat.rows() * (int) mat.elemSize();
        byte[] data = new byte[dataSize];
        mat.get(0, 0, data);
        int type = mat.channels() == 1 ? BufferedImage.TYPE_BYTE_GRAY : BufferedImage.TYPE_3BYTE_BGR;
        if (type == BufferedImage.TYPE_3BYTE_BGR) {
            for (int i = 0; i < dataSize; i += 3) {
                byte blue = data[i];
                data[i] = data[i + 2];
                data[i + 2] = blue;
            }
        }
        BufferedImage image = new BufferedImage(mat.cols(), mat.rows(), type);
        image.getRaster().setDataElements(0, 0, mat.cols(), mat.rows(), data);
        return image;
    }
}

四、总结

opencv下载地址

你可能感兴趣的:(opencv,人脸识别,java)