AI 常见术语总结

 
  • BN(Batch-normalization)在一层的输出上计算所有特征映射的均值和标准差,并且使用这些值规范化它们的响应。因此使得所有神经图(neural maps)在同样范围有响应,而且是零均值,这有助于训练,还能重点关注如何最好的结合这些特征。
  • Concatenation, 将长宽相同(通道可能不同)的图像(或Feature Map),按通道深度连接在一起,如 80*60*4 和80*60*3连接=> 80*60*7
  • GAP (Global average pooling ),参考:https://www.jianshu.com/p/04f7771f4da2
  • CCCP层(cascaded cross channel parametric pooling) 
  • MLP(Multi-Layer Perceptron) 多层感知器
  • NIN (Network In Network)
  • LB(Leaderboard )
  • BCE: Batch cross entropy
  • TTA: Test Time Augmentation测试时的数据增强
  • AGD: stochastic gradient descent 随机梯度下降法

  • ensemble learning集成学习,将多个弱分类器,集成为一个强分类器

  • NASNet: Neural Architecture Search With Reinforcement Learning,能生成AI的AI,采用强化学习机制
  • MAML: model-agnostic meta learnings  未知模型元学习
  • FPNFeature Pyramid Network 特征梯度网络

转载于:https://www.cnblogs.com/xbit/p/10051187.html

你可能感兴趣的:(人工智能)