隐语发布“基于MPC的金融风控全链路技术方案”

过去几年,业界不断推进隐私计算在金融场景的实践探索。其中,多方安全计算(MPC)技术可实现对原始数据按用途授权使用,有效避免数据的二次流转,达到数据可用并可控相对更匹配金融行业的联合风控场景需求。

多方安全计算技术在金融风控的贷前准入、贷中提额、贷后清退、金融反欺诈等场景中都有着巨大的应用价值,隐语开放平台此次发布的技术方案之所选择MPC路线深度打造,既是因其安全性上可证的优势,也是为金融风控量体裁衣,助力提升金融风控数据价值共享的安全水位,并对金融机构展示出MPC方案的通用性灵活性,降低整个金融行业数智升级改造成本、提升新安全协议业务接入效率。

隐语发布“基于MPC的金融风控全链路技术方案”_第1张图片

一、与已有金融风控隐私计算差异何在?

金融风控的细分链路往往长而繁,每个环节都会面临数据安全的挑战,而为全链路提供高安全水位的MPC解决方案难度极高。此前,业界对全流程金融智能风控的研究还处在探索阶段,暂无公开的基于MPC的金融风控全链路解决方案。

因为,训练风控模型只是金融风控的其中一环。在建模之前,往往还会涉及数据的探查、数据的加工与分析,在建模之后,还需要将模型服务化。对于隐私计算来说,无论是前期的数据分析、或是后期的模型服务所带来的难度,都不低于机器学习,甚至在MPC的数据分析领域的难度更超过了MPC机器学习。

隐语能够实现此方案,一方面基于自身在MPC技术上的积累与研创,另一方面依托蚂蚁丰富的金融行业场景打磨沉淀,通过多年的创新、应用组合训练,才得以针对金融风控数据全生命周期高安全性的需求,实现了包括数据分析、特征预处理、模型训练、效果评估、模型服务化在内的全链路安全的数据处理能力,为多方数据合作场景提供了金融风控的全链路技术解决方案。

二、隐语MPC金融风控业务视角背后的技术详解

通过隐语开放平台体验金融风控中的必经业务步骤,可以分别找到其背后基于MPC的全链路技术支撑点。体验申请地址:登录 - 支付宝隐语发布“基于MPC的金融风控全链路技术方案”_第2张图片

 

1、数据注册
在数据资产注册环节,隐语即提供了独有的CCL(Column Control List)列安全约束功能,以应对后续所有环节中的数据安全隐患。该功能可支持联合项目的所有参与方在数据注册阶段,各自配置其数据资产的安全约束;在用户创建项目后,任何对数据的使用都会触发系统自动检查,确保后续所有操作都满足用户配置的安全约束。
2、样本对齐
隐语提供隐私安全求交PSI能力,在多方样本对齐处理过程中,保证样本交集外的无关数据不泄露。且在这一环节中,用户可根据多方样本的交集拼上多方特征,形成虚拟宽表用于后续的建模。
3、特征预处理
隐语提供了丰富的特征预处理组件,可满足用户进行空缺值/异常值处理、数据标准化、woe分箱等联合特征处理,配合特征统计组件如相关系数矩阵、全表统计、VIF指标计算,即可辅助用户完成多方安全数据分析的统计结果生成。
4、模型训练
隐语在隐私计算算法层面建设了一系列的通用机器学习算法,如逻辑回归、评分卡、XGB等算法,且平台提供了通用的组件配置项,业务可根据实际数据情况进行模型的选择和配置,按需应用于在金融风控贷前、贷中、贷后及反欺诈等场景。
5、模型预测
隐语支持模型服务化一键提交部署,提供测试环境验证、冒烟、灰度、重跑等一系列稳定性保障措施,确保性能达到生产级别。

6、监控和审计

针对模型上线服务,隐语提供了一系列业务指标监控能力,支持机器维度资源监控的同时,也能监控识别模型效果,在部分指标下降或出现异常数据时,可进行服务版本的升级;同时,平台提供了全链路审计的能力,所有平台操作和运行日志都可追溯、可审计,以进行多方安全模型迭代或问题排查。隐语发布“基于MPC的金融风控全链路技术方案”_第3张图片目前,上述流程已可通过隐语开放平台进行体验,并且提供多种安全协议可供选择,可根据不同的业务场景选择不同的安全协议,达到安全、效率、效果的平衡。隐语开放平台已开放体验申请,欢迎申请试用!

 

三、隐语MPC金融风控全链路技术方案展望

金融风控全链路方案在保护数据源头方信息不泄露的前提下,可将更多维度信用数据纳入联合模型中,从而构建更精准的大数据信用风控模型。该技术方案的支持,可增进金融风控联合项目参与方彼此之间必要的协同与沟通,加速金融风控管理模式由传统手段向前沿技术的转型,服务于政府与金融业协同监管,更好地促进金融数据要素市场的建设。

隐语未来的MPC全链路技术方案建设不仅针对金融风控,未来也将开放NN、DeepFM等营销推荐中常用的模型,与隐语的多方安全分析能力结合,逐步开放医疗、营销等更多场景的全链路方案,隐语开放平台还将在那时通过提供DAG行业建模模板、IDE代码模版,以便真切感受隐语的MPC全链路能力。

此外,隐语开源框架V0.7.11代码也已发布,开发者可以调用代码进行定制化开发,除本篇隐语开放平台功能详解,隐语开源社区也将面向开发者发布配套的交互式教程,敬请期待!

你可能感兴趣的:(隐私计算技术,人工智能,大数据)