TX2部署Yolo过程记录

1.获得引擎文件

我的上一篇博文里面已经介绍过了

2.应用引擎文件

此处参考这一个博主,感谢他的文章

  1. tensortx/yolov5下原来的samples文件删除掉.新建samples文件夹,放入一张测试的图片,进行测试.
  2. 想要视频流(本地视频或者USB摄像头)改一下yolov5.cpp
#include 
#include 
#include "cuda_utils.h"
#include "logging.h"
#include "common.hpp"
#include "utils.h"
#include "calibrator.h"
 
#define USE_FP16  // set USE_INT8 or USE_FP16 or USE_FP32
#define DEVICE 0  // GPU id
#define NMS_THRESH 0.4
#define CONF_THRESH 0.5
#define BATCH_SIZE 1
 
// stuff we know about the network and the input/output blobs
static const int INPUT_H = Yolo::INPUT_H;
static const int INPUT_W = Yolo::INPUT_W;
static const int CLASS_NUM = Yolo::CLASS_NUM;
static const int OUTPUT_SIZE = Yolo::MAX_OUTPUT_BBOX_COUNT * sizeof(Yolo::Detection) / sizeof(float) + 1;  // we assume the yololayer outputs no more than MAX_OUTPUT_BBOX_COUNT boxes that conf >= 0.1
const char* INPUT_BLOB_NAME = "data";
const char* OUTPUT_BLOB_NAME = "prob";
static Logger gLogger;
 
#修改为自己的类别
char *my_classes[]={ "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light",
         "fire hydrant", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow",
         "elephant", "bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee",
         "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard","surfboard",
         "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
         "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch",
         "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone",
         "microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear",
         "hair drier", "toothbrush" };
 
static int get_width(int x, float gw, int divisor = 8) {
    //return math.ceil(x / divisor) * divisor
    if (int(x * gw) % divisor == 0) {
        return int(x * gw);
    }
    return (int(x * gw / divisor) + 1) * divisor;
}
 
static int get_depth(int x, float gd) {
    if (x == 1) {
        return 1;
    }
    else {
        return round(x * gd) > 1 ? round(x * gd) : 1;
    }
}
 #创建engine和network
ICudaEngine* build_engine(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt, float& gd, float& gw, std::string& wts_name) {
    INetworkDefinition* network = builder->createNetworkV2(0U);
 
    // Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME
    ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W });
    assert(data);
 
    std::map<std::string, Weights> weightMap = loadWeights(wts_name);
 
    /* ------ yolov5 backbone------ */
    auto focus0 = focus(network, weightMap, *data, 3, get_width(64, gw), 3, "model.0");
    auto conv1 = convBlock(network, weightMap, *focus0->getOutput(0), get_width(128, gw), 3, 2, 1, "model.1");
    auto bottleneck_CSP2 = C3(network, weightMap, *conv1->getOutput(0), get_width(128, gw), get_width(128, gw), get_depth(3, gd), true, 1, 0.5, "model.2");
    auto conv3 = convBlock(network, weightMap, *bottleneck_CSP2->getOutput(0), get_width(256, gw), 3, 2, 1, "model.3");
    auto bottleneck_csp4 = C3(network, weightMap, *conv3->getOutput(0), get_width(256, gw), get_width(256, gw), get_depth(9, gd), true, 1, 0.5, "model.4");
    auto conv5 = convBlock(network, weightMap, *bottleneck_csp4->getOutput(0), get_width(512, gw), 3, 2, 1, "model.5");
    auto bottleneck_csp6 = C3(network, weightMap, *conv5->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(9, gd), true, 1, 0.5, "model.6");
    auto conv7 = convBlock(network, weightMap, *bottleneck_csp6->getOutput(0), get_width(1024, gw), 3, 2, 1, "model.7");
    auto spp8 = SPP(network, weightMap, *conv7->getOutput(0), get_width(1024, gw), get_width(1024, gw), 5, 9, 13, "model.8");
 
    /* ------ yolov5 head ------ */
    auto bottleneck_csp9 = C3(network, weightMap, *spp8->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), false, 1, 0.5, "model.9");
    auto conv10 = convBlock(network, weightMap, *bottleneck_csp9->getOutput(0), get_width(512, gw), 1, 1, 1, "model.10");
 
    auto upsample11 = network->addResize(*conv10->getOutput(0));
    assert(upsample11);
    upsample11->setResizeMode(ResizeMode::kNEAREST);
    upsample11->setOutputDimensions(bottleneck_csp6->getOutput(0)->getDimensions());
 
    ITensor* inputTensors12[] = { upsample11->getOutput(0), bottleneck_csp6->getOutput(0) };
    auto cat12 = network->addConcatenation(inputTensors12, 2);
    auto bottleneck_csp13 = C3(network, weightMap, *cat12->getOutput(0), get_width(1024, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.13");
    auto conv14 = convBlock(network, weightMap, *bottleneck_csp13->getOutput(0), get_width(256, gw), 1, 1, 1, "model.14");
 
    auto upsample15 = network->addResize(*conv14->getOutput(0));
    assert(upsample15);
    upsample15->setResizeMode(ResizeMode::kNEAREST);
    upsample15->setOutputDimensions(bottleneck_csp4->getOutput(0)->getDimensions());
 
    ITensor* inputTensors16[] = { upsample15->getOutput(0), bottleneck_csp4->getOutput(0) };
    auto cat16 = network->addConcatenation(inputTensors16, 2);
 
    auto bottleneck_csp17 = C3(network, weightMap, *cat16->getOutput(0), get_width(512, gw), get_width(256, gw), get_depth(3, gd), false, 1, 0.5, "model.17");
 
    // yolo layer 0
    IConvolutionLayer* det0 = network->addConvolutionNd(*bottleneck_csp17->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.0.weight"], weightMap["model.24.m.0.bias"]);
    auto conv18 = convBlock(network, weightMap, *bottleneck_csp17->getOutput(0), get_width(256, gw), 3, 2, 1, "model.18");
    ITensor* inputTensors19[] = { conv18->getOutput(0), conv14->getOutput(0) };
    auto cat19 = network->addConcatenation(inputTensors19, 2);
    auto bottleneck_csp20 = C3(network, weightMap, *cat19->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.20");
    //yolo layer 1
    IConvolutionLayer* det1 = network->addConvolutionNd(*bottleneck_csp20->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.1.weight"], weightMap["model.24.m.1.bias"]);
    auto conv21 = convBlock(network, weightMap, *bottleneck_csp20->getOutput(0), get_width(512, gw), 3, 2, 1, "model.21");
    ITensor* inputTensors22[] = { conv21->getOutput(0), conv10->getOutput(0) };
    auto cat22 = network->addConcatenation(inputTensors22, 2);
    auto bottleneck_csp23 = C3(network, weightMap, *cat22->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), false, 1, 0.5, "model.23");
    IConvolutionLayer* det2 = network->addConvolutionNd(*bottleneck_csp23->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.24.m.2.weight"], weightMap["model.24.m.2.bias"]);
 
    auto yolo = addYoLoLayer(network, weightMap, "model.24", std::vector<IConvolutionLayer*>{det0, det1, det2});
    yolo->getOutput(0)->setName(OUTPUT_BLOB_NAME);
    network->markOutput(*yolo->getOutput(0));
 
    // Build engine
    builder->setMaxBatchSize(maxBatchSize);
    config->setMaxWorkspaceSize(16 * (1 << 20));  // 16MB
#if defined(USE_FP16)
    config->setFlag(BuilderFlag::kFP16);
#elif defined(USE_INT8)
    std::cout << "Your platform support int8: " << (builder->platformHasFastInt8() ? "true" : "false") << std::endl;
    assert(builder->platformHasFastInt8());
    config->setFlag(BuilderFlag::kINT8);
    Int8EntropyCalibrator2* calibrator = new Int8EntropyCalibrator2(1, INPUT_W, INPUT_H, "./coco_calib/", "int8calib.table", INPUT_BLOB_NAME);
    config->setInt8Calibrator(calibrator);
#endif
 
    std::cout << "Building engine, please wait for a while..." << std::endl;
    ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
    std::cout << "Build engine successfully!" << std::endl;
 
    // Don't need the network any more
    network->destroy();
 
    // Release host memory
    for (auto& mem : weightMap)
    {
        free((void*)(mem.second.values));
    }
 
    return engine;
}
 
ICudaEngine* build_engine_p6(unsigned int maxBatchSize, IBuilder* builder, IBuilderConfig* config, DataType dt, float& gd, float& gw, std::string& wts_name) {
    INetworkDefinition* network = builder->createNetworkV2(0U);
 
    // Create input tensor of shape {3, INPUT_H, INPUT_W} with name INPUT_BLOB_NAME
    ITensor* data = network->addInput(INPUT_BLOB_NAME, dt, Dims3{ 3, INPUT_H, INPUT_W });
    assert(data);
 
    std::map<std::string, Weights> weightMap = loadWeights(wts_name);
 
    /* ------ yolov5 backbone------ */
    auto focus0 = focus(network, weightMap, *data, 3, get_width(64, gw), 3, "model.0");
    auto conv1 = convBlock(network, weightMap, *focus0->getOutput(0), get_width(128, gw), 3, 2, 1, "model.1");
    auto c3_2 = C3(network, weightMap, *conv1->getOutput(0), get_width(128, gw), get_width(128, gw), get_depth(3, gd), true, 1, 0.5, "model.2");
    auto conv3 = convBlock(network, weightMap, *c3_2->getOutput(0), get_width(256, gw), 3, 2, 1, "model.3");
    auto c3_4 = C3(network, weightMap, *conv3->getOutput(0), get_width(256, gw), get_width(256, gw), get_depth(9, gd), true, 1, 0.5, "model.4");
    auto conv5 = convBlock(network, weightMap, *c3_4->getOutput(0), get_width(512, gw), 3, 2, 1, "model.5");
    auto c3_6 = C3(network, weightMap, *conv5->getOutput(0), get_width(512, gw), get_width(512, gw), get_depth(9, gd), true, 1, 0.5, "model.6");
    auto conv7 = convBlock(network, weightMap, *c3_6->getOutput(0), get_width(768, gw), 3, 2, 1, "model.7");
    auto c3_8 = C3(network, weightMap, *conv7->getOutput(0), get_width(768, gw), get_width(768, gw), get_depth(3, gd), true, 1, 0.5, "model.8");
    auto conv9 = convBlock(network, weightMap, *c3_8->getOutput(0), get_width(1024, gw), 3, 2, 1, "model.9");
    auto spp10 = SPP(network, weightMap, *conv9->getOutput(0), get_width(1024, gw), get_width(1024, gw), 3, 5, 7, "model.10");
    auto c3_11 = C3(network, weightMap, *spp10->getOutput(0), get_width(1024, gw), get_width(1024, gw), get_depth(3, gd), false, 1, 0.5, "model.11");
 
    /* ------ yolov5 head ------ */
    auto conv12 = convBlock(network, weightMap, *c3_11->getOutput(0), get_width(768, gw), 1, 1, 1, "model.12");
    auto upsample13 = network->addResize(*conv12->getOutput(0));
    assert(upsample13);
    upsample13->setResizeMode(ResizeMode::kNEAREST);
    upsample13->setOutputDimensions(c3_8->getOutput(0)->getDimensions());
    ITensor* inputTensors14[] = { upsample13->getOutput(0), c3_8->getOutput(0) };
    auto cat14 = network->addConcatenation(inputTensors14, 2);
    auto c3_15 = C3(network, weightMap, *cat14->getOutput(0), get_width(1536, gw), get_width(768, gw), get_depth(3, gd), false, 1, 0.5, "model.15");
 
    auto conv16 = convBlock(network, weightMap, *c3_15->getOutput(0), get_width(512, gw), 1, 1, 1, "model.16");
    auto upsample17 = network->addResize(*conv16->getOutput(0));
    assert(upsample17);
    upsample17->setResizeMode(ResizeMode::kNEAREST);
    upsample17->setOutputDimensions(c3_6->getOutput(0)->getDimensions());
    ITensor* inputTensors18[] = { upsample17->getOutput(0), c3_6->getOutput(0) };
    auto cat18 = network->addConcatenation(inputTensors18, 2);
    auto c3_19 = C3(network, weightMap, *cat18->getOutput(0), get_width(1024, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.19");
 
    auto conv20 = convBlock(network, weightMap, *c3_19->getOutput(0), get_width(256, gw), 1, 1, 1, "model.20");
    auto upsample21 = network->addResize(*conv20->getOutput(0));
    assert(upsample21);
    upsample21->setResizeMode(ResizeMode::kNEAREST);
    upsample21->setOutputDimensions(c3_4->getOutput(0)->getDimensions());
    ITensor* inputTensors21[] = { upsample21->getOutput(0), c3_4->getOutput(0) };
    auto cat22 = network->addConcatenation(inputTensors21, 2);
    auto c3_23 = C3(network, weightMap, *cat22->getOutput(0), get_width(512, gw), get_width(256, gw), get_depth(3, gd), false, 1, 0.5, "model.23");
 
    auto conv24 = convBlock(network, weightMap, *c3_23->getOutput(0), get_width(256, gw), 3, 2, 1, "model.24");
    ITensor* inputTensors25[] = { conv24->getOutput(0), conv20->getOutput(0) };
    auto cat25 = network->addConcatenation(inputTensors25, 2);
    auto c3_26 = C3(network, weightMap, *cat25->getOutput(0), get_width(1024, gw), get_width(512, gw), get_depth(3, gd), false, 1, 0.5, "model.26");
 
    auto conv27 = convBlock(network, weightMap, *c3_26->getOutput(0), get_width(512, gw), 3, 2, 1, "model.27");
    ITensor* inputTensors28[] = { conv27->getOutput(0), conv16->getOutput(0) };
    auto cat28 = network->addConcatenation(inputTensors28, 2);
    auto c3_29 = C3(network, weightMap, *cat28->getOutput(0), get_width(1536, gw), get_width(768, gw), get_depth(3, gd), false, 1, 0.5, "model.29");
 
    auto conv30 = convBlock(network, weightMap, *c3_29->getOutput(0), get_width(768, gw), 3, 2, 1, "model.30");
    ITensor* inputTensors31[] = { conv30->getOutput(0), conv12->getOutput(0) };
    auto cat31 = network->addConcatenation(inputTensors31, 2);
    auto c3_32 = C3(network, weightMap, *cat31->getOutput(0), get_width(2048, gw), get_width(1024, gw), get_depth(3, gd), false, 1, 0.5, "model.32");
 
    /* ------ detect ------ */
    IConvolutionLayer* det0 = network->addConvolutionNd(*c3_23->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.0.weight"], weightMap["model.33.m.0.bias"]);
    IConvolutionLayer* det1 = network->addConvolutionNd(*c3_26->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.1.weight"], weightMap["model.33.m.1.bias"]);
    IConvolutionLayer* det2 = network->addConvolutionNd(*c3_29->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.2.weight"], weightMap["model.33.m.2.bias"]);
    IConvolutionLayer* det3 = network->addConvolutionNd(*c3_32->getOutput(0), 3 * (Yolo::CLASS_NUM + 5), DimsHW{ 1, 1 }, weightMap["model.33.m.3.weight"], weightMap["model.33.m.3.bias"]);
 
    auto yolo = addYoLoLayer(network, weightMap, "model.33", std::vector<IConvolutionLayer*>{det0, det1, det2, det3});
    yolo->getOutput(0)->setName(OUTPUT_BLOB_NAME);
    network->markOutput(*yolo->getOutput(0));
 
    // Build engine
    builder->setMaxBatchSize(maxBatchSize);
    config->setMaxWorkspaceSize(16 * (1 << 20));  // 16MB
#if defined(USE_FP16)
    config->setFlag(BuilderFlag::kFP16);
#elif defined(USE_INT8)
    std::cout << "Your platform support int8: " << (builder->platformHasFastInt8() ? "true" : "false") << std::endl;
    assert(builder->platformHasFastInt8());
    config->setFlag(BuilderFlag::kINT8);
    Int8EntropyCalibrator2* calibrator = new Int8EntropyCalibrator2(1, INPUT_W, INPUT_H, "./coco_calib/", "int8calib.table", INPUT_BLOB_NAME);
    config->setInt8Calibrator(calibrator);
#endif
 
    std::cout << "Building engine, please wait for a while..." << std::endl;
    ICudaEngine* engine = builder->buildEngineWithConfig(*network, *config);
    std::cout << "Build engine successfully!" << std::endl;
 
    // Don't need the network any more
    network->destroy();
 
    // Release host memory
    for (auto& mem : weightMap)
    {
        free((void*)(mem.second.values));
    }
 
    return engine;
}
 
void APIToModel(unsigned int maxBatchSize, IHostMemory** modelStream, float& gd, float& gw, std::string& wts_name) {
    // Create builder
    IBuilder* builder = createInferBuilder(gLogger);
    IBuilderConfig* config = builder->createBuilderConfig();
 
    // Create model to populate the network, then set the outputs and create an engine
    ICudaEngine* engine = build_engine(maxBatchSize, builder, config, DataType::kFLOAT, gd, gw, wts_name);
    assert(engine != nullptr);
 
    // Serialize the engine
    (*modelStream) = engine->serialize();
 
    // Close everything down
    engine->destroy();
    builder->destroy();
    config->destroy();
}
 
void doInference(IExecutionContext& context, cudaStream_t& stream, void** buffers, float* input, float* output, int batchSize) {
    // DMA input batch data to device, infer on the batch asynchronously, and DMA output back to host
    CUDA_CHECK(cudaMemcpyAsync(buffers[0], input, batchSize * 3 * INPUT_H * INPUT_W * sizeof(float), cudaMemcpyHostToDevice, stream));
    context.enqueue(batchSize, buffers, stream, nullptr);
    CUDA_CHECK(cudaMemcpyAsync(output, buffers[1], batchSize * OUTPUT_SIZE * sizeof(float), cudaMemcpyDeviceToHost, stream));
    cudaStreamSynchronize(stream);
}
 
bool parse_args(int argc, char** argv, std::string& engine) {
    if (argc < 3) return false;
    if (std::string(argv[1]) == "-v" && argc == 3) {
        engine = std::string(argv[2]);
    }
    else {
        return false;
    }
    return true;
}
 
int main(int argc, char** argv) {
    cudaSetDevice(DEVICE);
 
    //std::string wts_name = "";
    std::string engine_name = "";
    //float gd = 0.0f, gw = 0.0f;
    //std::string img_dir;
 
    if (!parse_args(argc, argv, engine_name)) {
        std::cerr << "arguments not right!" << std::endl;
        std::cerr << "./yolov5 -v [.engine] // run inference with camera" << std::endl;
        return -1;
    }
 
    std::ifstream file(engine_name, std::ios::binary);
    if (!file.good()) {
        std::cerr << " read " << engine_name << " error! " << std::endl;
        return -1;
    }
    char* trtModelStream{ nullptr };
    size_t size = 0;
    file.seekg(0, file.end);
    size = file.tellg();
    file.seekg(0, file.beg);
    trtModelStream = new char[size];
    assert(trtModelStream);
    file.read(trtModelStream, size);
    file.close();
 
 
    // prepare input data ---------------------------
    static float data[BATCH_SIZE * 3 * INPUT_H * INPUT_W];
    //for (int i = 0; i < 3 * INPUT_H * INPUT_W; i++)
    //    data[i] = 1.0;
    static float prob[BATCH_SIZE * OUTPUT_SIZE];
    IRuntime* runtime = createInferRuntime(gLogger);
    assert(runtime != nullptr);
    ICudaEngine* engine = runtime->deserializeCudaEngine(trtModelStream, size);
    assert(engine != nullptr);
    IExecutionContext* context = engine->createExecutionContext();
    assert(context != nullptr);
    delete[] trtModelStream;
    assert(engine->getNbBindings() == 2);
    void* buffers[2];
    // In order to bind the buffers, we need to know the names of the input and output tensors.
    // Note that indices are guaranteed to be less than IEngine::getNbBindings()
    const int inputIndex = engine->getBindingIndex(INPUT_BLOB_NAME);
    const int outputIndex = engine->getBindingIndex(OUTPUT_BLOB_NAME);
    assert(inputIndex == 0);
    assert(outputIndex == 1);
    // Create GPU buffers on device
    CUDA_CHECK(cudaMalloc(&buffers[inputIndex], BATCH_SIZE * 3 * INPUT_H * INPUT_W * sizeof(float)));
    CUDA_CHECK(cudaMalloc(&buffers[outputIndex], BATCH_SIZE * OUTPUT_SIZE * sizeof(float)));
    // Create stream
    cudaStream_t stream;
    CUDA_CHECK(cudaStreamCreate(&stream));
 
     #读取本地视频
    //cv::VideoCapture capture("/home/nano/Videos/video.mp4");
     #调用本地usb摄像头,我的默认参数为1,如果1报错,可修改为0.
    cv::VideoCapture capture(1);
    if (!capture.isOpened()) {
        std::cout << "Error opening video stream or file" << std::endl;
        return -1;
    }
 
    int key;
    int fcount = 0;
    while (1)
    {
        cv::Mat frame;
        capture >> frame;
        if (frame.empty())
        {
            std::cout << "Fail to read image from camera!" << std::endl;
            break;
        }
        fcount++;
        //if (fcount < BATCH_SIZE && f + 1 != (int)file_names.size()) continue;
        for (int b = 0; b < fcount; b++) {
            //cv::Mat img = cv::imread(img_dir + "/" + file_names[f - fcount + 1 + b]);
            cv::Mat img = frame;
            if (img.empty()) continue;
            cv::Mat pr_img = preprocess_img(img, INPUT_W, INPUT_H); // letterbox BGR to RGB
            int i = 0;
            for (int row = 0; row < INPUT_H; ++row) {
                uchar* uc_pixel = pr_img.data + row * pr_img.step;
                for (int col = 0; col < INPUT_W; ++col) {
                    data[b * 3 * INPUT_H * INPUT_W + i] = (float)uc_pixel[2] / 255.0;
                    data[b * 3 * INPUT_H * INPUT_W + i + INPUT_H * INPUT_W] = (float)uc_pixel[1] / 255.0;
                    data[b * 3 * INPUT_H * INPUT_W + i + 2 * INPUT_H * INPUT_W] = (float)uc_pixel[0] / 255.0;
                    uc_pixel += 3;
                    ++i;
                }
            }
        }
 
        // Run inference
        auto start = std::chrono::system_clock::now();#获取模型推理开始时间
        doInference(*context, stream, buffers, data, prob, BATCH_SIZE);
        auto end = std::chrono::system_clock::now();#结束时间
        //std::cout << std::chrono::duration_cast(end - start).count() << "ms" << std::endl;
        int fps = 1000.0 / std::chrono::duration_cast<std::chrono::milliseconds>(end - start).count();
        std::vector<std::vector<Yolo::Detection>> batch_res(fcount);
        for (int b = 0; b < fcount; b++) {
            auto& res = batch_res[b];
            nms(res, &prob[b * OUTPUT_SIZE], CONF_THRESH, NMS_THRESH);
        }
        for (int b = 0; b < fcount; b++) {
            auto& res = batch_res[b];
            //std::cout << res.size() << std::endl;
            //cv::Mat img = cv::imread(img_dir + "/" + file_names[f - fcount + 1 + b]);
            for (size_t j = 0; j < res.size(); j++) {
                cv::Rect r = get_rect(frame, res[j].bbox);
                cv::rectangle(frame, r, cv::Scalar(0x27, 0xC1, 0x36), 2);
                std::string label = my_classes[(int)res[j].class_id];
                cv::putText(frame, label, cv::Point(r.x, r.y - 1), cv::FONT_HERSHEY_PLAIN, 1.2, cv::Scalar(0xFF, 0xFF, 0xFF), 2);
                std::string jetson_fps = "FPS: " + std::to_string(fps);
                cv::putText(frame, jetson_fps, cv::Point(11, 80), cv::FONT_HERSHEY_PLAIN, 3, cv::Scalar(0, 0, 255), 2, cv::LINE_AA);
            }
            //cv::imwrite("_" + file_names[f - fcount + 1 + b], img);
        }
        cv::imshow("yolov5", frame);
        key = cv::waitKey(1);
        if (key == 'q') {
            break;
        }
        fcount = 0;
    }
 
    capture.release();
    // Release stream and buffers
    cudaStreamDestroy(stream);
    CUDA_CHECK(cudaFree(buffers[inputIndex]));
    CUDA_CHECK(cudaFree(buffers[outputIndex]));
    // Destroy the engine
    context->destroy();
    engine->destroy();
    runtime->destroy();
 
    return 0;

在 tensorrtx/yolov5/build中打开命令行
yolov5s.engine应当存在于tensorrtx/yolov5/build中

make  
sudo ./yolov5 -v yolov5s.engine

其他方法

挖坑待写

你可能感兴趣的:(笔记,自动驾驶,深度学习,人工智能)