- 机器学习宝典——第6章
爱看烟花的码农
机器学习人工智能
第6章:聚类算法(Clustering)你好,同学!欢迎来到无监督学习的世界。与监督学习不同,这里的我们没有“标准答案”(标签),我们的目标是在数据中发现隐藏的、内在的结构。聚类算法就是实现这一目标的核心工具,它试图将数据集中的样本划分为若干个不相交的子集,我们称之为“簇”(cluster)。本章我们将深入探讨三种最具代表性的聚类算法:K-均值(K-Means)、层次聚类(Hierarchical
- R 语言安装使用教程
小奇JAVA面试
安装使用教程r语言开发语言
一、R语言简介R是一种用于统计分析、数据挖掘和可视化的编程语言和环境。它在学术界和数据分析领域中广泛使用,拥有丰富的统计函数库和绘图功能。二、安装R语言2.1下载R安装包前往CRAN官网下载适合你操作系统的安装程序:官网地址:https://cran.r-project.org/2.2Windows安装下载.exe安装包;双击安装程序,按默认选项一路安装即可;安装完成后,可通过RGUI或命令行启动
- Python scikit-learn 【机器学习库】全面讲解
让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——不写代码也能做软件开发》scikit-learn(简称sklearn)是Python最流行的机器学习库之一,提供简单高效的数据挖掘和数据分析工具。它基于NumPy、SciPy和Matplotlib构建,广泛应用于工业界和学术界。核心优势统一API设计:所有模型使用一致的接口(fit()、predict()、score())丰富的算法:覆
- 【数据挖掘】支持向量机(SVM)
大雨淅淅
大数据数据挖掘支持向量机算法大数据回归
目录一、支持向量机(SVM)算法概述二、支持向量机(SVM)算法优缺点和改进2.1支持向量机(SVM)算法优点2.2支持向量机(SVM)算法缺点2.3支持向量机(SVM)算法改进三、支持向量机(SVM)算法实现3.1支持向量机(SVM)算法C语言实现3.2支持向量机(SVM)算法JAVA实现3.3支持向量机(SVM)算法python实现四、支持向量机(SVM)算法应用五、支持向量机(SVM)算法发
- 【字节跳动】数据挖掘面试题0005:在旋转有序数组中查找是否存在元素key
言析数智
数据挖掘常见面试题算法面试题数据挖掘二分查找法
文章大纲方法思路代码解释问题场景:在“打乱”的有序数组里找数核心思路:每次排除一半可能性分步骤找数(以数组[7,8,9,10,1,2,3]为例,找数字10)再举个反例:找数字5(数组中没有)用“左右有序”的逻辑来总结代码的“人话”翻译为什么时间复杂度是O(logn)?要在旋转后的有序数组中以O(logn)时间复杂度查找元素,可利用二分查找的变体。关键在于确定哪一半数组仍然有序,并判断目标值是否在该
- 【字节跳动】数据挖掘面试题0006:SVM(支持向量机)详细原理
言析数智
数据挖掘常见面试题支持向量机数据挖掘算法SVM
文章大纲SVM(支持向量机)原理:用最通俗的话讲清楚1.核心思想:找一条“最安全”的分界线2.数学背后的“人话”逻辑3.处理“分不开”的情况:核函数的魔法4.为什么SVM有时比神经网络“聪明”?`5.SVM的优缺点:适合什么场景?`6.一句话总结SVM7.SVM常见的面试知识点除了原理相关内容外**1.硬间隔SVM的数学表达****2.软间隔SVM的数学表达****3.拉格朗日对偶问题推导****
- Orange3机器学习建模和可视化分析数据预处理、特征工程、算法训练
维度软件库
测试工具开源软件电脑
各位数据挖掘爱好者们!今天给你们介绍一款超厉害的开源软件——Orange3。它就像一个神奇的工具箱,你只要通过拖放组件就能完成机器学习建模和可视化分析,软件下载地址安装包它支持数据预处理、特征工程、算法训练和评估整个流程,就像一个贴心的管家,把数据挖掘的事儿全给你安排得明明白白!它还内置了箱线图、决策树这些可视化工具,能直观地把数据分布和模型结构展示出来,就像给你开了个透视眼,让数据一目了然!这软
- 推荐算法化身 “购物读心术”!ZKmall开源商城如何让用户消费激增 30%?
zkmall
ZMkallB2C商城B2B2C商城推荐算法算法机器学习
在电商竞争白热化的当下,如何精准把握用户需求、提升消费转化,成为企业突围的关键。ZKmall开源商城以推荐算法为核心驱动力,通过深度数据挖掘与智能策略优化,实现用户平均消费金额提升30%,复购率增长25%。这套被称为“购物读心术”的技术,究竟如何颠覆传统电商的人货匹配模式?一、传统推荐的痛点:“猜不准”导致用户流失传统电商平台的推荐功能往往依赖简单的“热销商品”“同类推荐”逻辑,无法满足用户个性化
- 科学的第五范式:人工智能如何重塑发现之疆
田园Coder
人工智能科普人工智能科普
在人类探索未知的壮阔史诗中,科学方法的演进如同照亮迷雾的灯塔。从基于经验的第一范式(描述自然现象),到以理论推演为核心的第二范式(牛顿定律、麦克斯韦方程),再到以计算机模拟为标志的第三范式(气候模型、分子动力学),直至以大数据挖掘为驱动的第四范式(基因组学、高能物理),每一次范式跃迁都极大地拓展了认知的疆界。如今,我们正站在一个更恢弘转折的门槛上——第五范式:人工智能驱动的科学(AIforScie
- 【2025CVPR】SEC-Prompt:少样本增量学习中的语义互补提示模型详解
清风AI
生成对抗网络人工智能神经网络pcm目标跟踪深度学习计算机视觉
目录一、研究背景:少样本增量学习的挑战二、SEC-Prompt核心原理1.自适应层次化查询(AdaptiveHierarchicalQuery)2.语义互补提示机制(1)判别性提示(D-Prompt)(2)非判别性提示(ND-Prompt)3.训练策略创新(1)判别性提示聚类损失(2)ND-Prompt数据增强三、模型架构图解四、关键创新点五、实验结果对比1.ImageNet-R结果2.CUB20
- Python入门Day1
Zonda要好好学习
Pythonpython开发语言
Python介绍Python的发展历程为什么叫PythonPython本来是蟒蛇的意思,用来象征写代码的程序员。因为相对于Java、C++等程序,Python非常简单,所以写Python也的程序员也象征“玩蛇”的程序员。Python的由来Python的历史也相对比较悠久,可以追溯到1990年,有数十年的发展历程,随着今年人工智能和数据挖掘的发展,Python飞速发展。ABC语言是一种语言和编程环境
- 基于Python的气象数据分析及可视化研究
气象数据作为地球系统科学的核心要素,其分析与可视化在气候研究、灾害预警、农业生产等领域具有战略性意义。本文以Python技术栈为基座,系统探讨气象数据的采集预处理、多维度分析模型及可视化表达范式,通过3000+字深度研究揭示Pandas时序处理、Xarray多维计算、Cartopy地理可视化等工具的核心方法论。内容涵盖全球再分析数据挖掘、极端天气模式识别、动态热力图构建等实战场景,并引入机器学习预
- Anconda环境下Vscode安装Python
Java后时代
程序员python学习面试
最后Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习Python门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的Pytho
- Python 爬虫实战:GitHub 热门项目分析(Star 趋势 + 技术栈聚类)
Python核芯
Python爬虫实战项目python爬虫github
前言今天我们要一起完成一个实战项目:通过爬取GitHub热门项目,分析它们的Star趋势以及技术栈聚类。这个项目不仅能让我们熟悉GitHubAPI的使用,还能锻炼我们数据处理和可视化的能力。GitHub作为全球最大的代码托管平台,拥有海量的开源项目。通过分析这些项目的Star趋势和技术栈,我们可以了解当前热门的技术方向,这对我们的技术选型和职业发展都有很大的帮助。本文将分为以下几个部分:爬取Git
- Python爬虫实战:研究stdlib库相关技术
ylfhpy
爬虫项目实战python爬虫前端开发语言stdlib标准库
1.引言1.1研究背景与意义在当今信息爆炸的时代,互联网上的数据量呈指数级增长。网络爬虫作为一种自动获取网页内容的工具,在信息检索、数据挖掘、舆情分析等领域发挥着重要作用。Python由于其简洁的语法和丰富的库支持,成为开发网络爬虫的首选语言。本文旨在探讨如何利用Python标准库构建一个功能完整的网络爬虫系统,避免依赖过多第三方库,提高系统的可移植性和稳定性。1.2研究目标本文的研究目标是设计并
- 【字节跳动】数据挖掘面试题0004: 一个随机整数产生器产生[1,5],如何设计一个产生[1,7]的随机整数产生器。
言析数智
数据挖掘常见面试题python随机数算法面试题
文章大纲题目描述方法思路具体实现方法解释数学原理通俗类比解释第一步:从1-5到0-4第二步:创造"更大的骰子"第三步:给棋盘编号第四步:压缩到1-7第五步:处理"无效数字"总结:`完成解决方案流程`题目描述要基于一个生成范围在[1,5]的随机整数生成器来设计出能生成[1,7]随机整数的生成器,可按以下步骤操作:方法思路借助原有的生成器生成两个相互独立的随机数,范围都是[1,5]。把这两个随机数组合
- 【字节跳动】数据挖掘面试题0003:有一个文件,每一行是一个数字,如何用 MapReduce 进行排序和求每个用户每个页面停留时间
MapReduce是一种适合处理大规模数据的分布式计算框架,其核心思想是将计算任务分解为Map(映射)和Reduce(归约)两个阶段。对文件中的数字进行排序,可以利用MapReduce的特性来实现。要使用MapReduce对文件中的数字进行排序,需要实现一个MapReduce作业,将数字作为键处理,利用Hadoop的默认排序机制对键进行排序。以下是实现步骤和示例代码:文章大纲题目一:有一个文件,每
- 《dlib库中的聚类》算法详解:从原理到实践
A小庞
算法算法聚类数据挖掘机器学习c++
一、dlib库与聚类算法的关联1.1dlib库的核心功能dlib是一个基于C++的机器学习和计算机视觉工具库,其聚类算法模块提供了多种高效的无监督学习工具。聚类算法在dlib中主要用于:数据分组:将相似的数据点划分为同一簇。特征分析:通过聚类结果发现数据潜在的结构。降维辅助:结合聚类结果进行特征选择或数据压缩。dlib支持的经典聚类算法包括K-Means和ChineseWhispers,适用于图像
- 面了字节跳动的数据挖掘岗,感觉真的很难。。。
大模型爱好者社区
机器学习深度学习面试宝典数据挖掘人工智能数据分析算法面试
节前,我们社群组织了一场技术&面试讨论会,邀请了一些互联网大厂同学、参加社招和校招面试的同学,针对新手如何入门机器学习算法、该如何备战、面试常考点分享等热门话题进行了深入的讨论。基于社群的讨论,今天我整理了一个同学的面试题,分享给大家,希望对后续找工作的有所帮助。喜欢记得点赞、收藏、关注。更多技术交流&面经学习,可以文末加入我们交流群。一面40min【编程题】有两种数据,分别是被转发的用户和转发的
- 【字节跳动】数据挖掘面试题0002:从转发数据中求原视频用户以及转发的最长深度和二叉排序树指定值
言析数智
数据挖掘常见面试题数据挖掘面试题
文章大纲题目一:从转发数据中求原视频用户以及转发的最长深度问题分析解题思路寻找原视频用户计算转发最长深度题目二:在一棵二叉排序树中,找到比给定数值小的最大节点方法思路题目一:从转发数据中求原视频用户以及转发的最长深度在数据处理和算法面试中,常常会遇到一些基于实际业务场景的题目,比如根据用户转发数据来分析原视频用户以及转发深度。今天就来探讨一道这样的面试题:给定被转发用户和转发用户两组数据,求原视频
- 【字节跳动】数据挖掘面试题0001:打车场景下POI与ODR空间关联查询
言析数智
数据挖掘常见面试题数据挖掘人工智能面试题
题目描述打车的场景下,poi记录了建筑物的坐标:poi(pid,x,y),odr记录的是乘客上车点的坐标:odr(oid,x,y);希望对所有的poi,获得其周围的100m的odr:结果(pid,oid)打车场景下POI与ODR空间关联查询在打车场景中,我们经常需要将建筑物坐标(POI)与乘客上车点(ODR)进行空间关联分析。这个问题本质上是一个空间连接(SpatialJoin)问题,需要找到距离
- Python爬虫实战:如何爬取雪球网的股票数据
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言自动化区块链
引言雪球网(Xueqiu)是中国知名的股票投资社交平台,它提供了丰富的股票数据、投资者的评论和分析,并允许用户进行股票交易的模拟。雪球平台集成了大量的股市数据,包括个股的实时行情、财务数据、投资者分析以及论坛社区内容。许多投资者和金融分析师都在该平台上进行股票研究、讨论和数据挖掘。在本文中,我们将介绍如何通过Python爬虫抓取雪球网的股票数据。通过分析雪球网提供的API和网页结构,获取个股的实时
- FAISS 简介及其与 GPT 的对接(RAG)
言之。
AIfaissgpteasyui
什么是FAISS?FAISS(FacebookAISimilaritySearch)是FacebookAI团队开发的一个高效的相似性搜索和密集向量聚类的库。它主要用于:大规模向量相似性搜索高维向量最近邻检索向量聚类https://github.com/facebookresearch/faissFAISS特别适合处理高维向量数据,能够快速找到与查询向量最相似的向量,广泛应用于推荐系统、图像检索、自
- Python程序设计 第6章:函数和函数式编程
若北辰
Python程序设计python开发语言
Python程序设计Python是全球范围内最受欢迎的编程语言之一,学好Python将对个人职业生涯产生很大的助力,Python在机器学习、深度学习、数据挖掘等领域应用极为广泛。在数据科学家/数据分析师、人工智能工程师、网络安全工程师、软件工程师/全栈工程师、自动化测试工程师等岗位,年入50万,很普遍,学好Python,高薪就业不是问题,因此推出Python程序设计系列文章:Python程序设计第
- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- 机器学习-- 聚类
SunsPlanter
机器学习机器学习聚类人工智能
什么是聚类?Clustering可以简单地说,对有标注的数据分类,就是逻辑回归(属于有监督分类),对无标注的数据分类,就是聚类(属于无监督分类)聚类是一种无监督学习技术,其目标是根据样本之间的相似性将未标记的数据分组。比如,在一个假设的患者研究中,研究人员正在评估一项新的治疗方案。在试验期间,患者每周会报告自身症状的频率以及严重程度。研究人员可以使用聚类分析将对治疗反应相似的患者归为同一类。图1展
- 数据挖掘 关联规则挖掘 Apriori算法 C++实现
王者灵梦
数据挖掘c++机器学习
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录前言一、Apriori是什么,大致步骤?二、全部代码全部代码总结前言本文只是基于课程作业的相关理解,请谨慎参考,如有不妥,欢迎各位批评指正。一、Apriori是什么,大致步骤?示例:Apriori算法是一种最有影响的布尔关联规则频繁项集的算法,Apriori使用一乘坐逐层扫描的迭代方法,“K-1”项集用于搜索“K”项集。大致步
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- 【Python学习】可视化图表-使用matplotlib绘制不同种类散点图
西攻城狮北
Python实用案例python学习matplotlib可视化图形
一、引言在数据可视化领域,散点图是一种极其强大的工具,它能够直观地展示变量之间的关系、数据分布的模式以及潜在的聚类情况等。通过散点图,我们可以轻松地发现数据中的异常值、相关性以及其他隐藏的特征。Python的matplotlib库提供了丰富而灵活的功能,可以帮助我们绘制出各种类型的散点图,以满足不同的数据分析和展示需求。本文将深入探讨如何使用matplotlib绘制多种类型的散点图,并提供详细的代
- 【PaddleOCR】快速集成 PP-OCRv5 的 Python 实战秘籍--- PaddleOCR实例化 OCR 对象的参数介绍
云天徽上
PaddleOCRpythonocr开发语言人工智能文字识别
博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907)博主粉丝群介绍:①群内初中生、
- LeetCode[位运算] - #137 Single Number II
Cwind
javaAlgorithmLeetCode题解位运算
原题链接:#137 Single Number II
要求:
给定一个整型数组,其中除了一个元素之外,每个元素都出现三次。找出这个元素
注意:算法的时间复杂度应为O(n),最好不使用额外的内存空间
难度:中等
分析:
与#136类似,都是考察位运算。不过出现两次的可以使用异或运算的特性 n XOR n = 0, n XOR 0 = n,即某一
- 《JavaScript语言精粹》笔记
aijuans
JavaScript
0、JavaScript的简单数据类型包括数字、字符创、布尔值(true/false)、null和undefined值,其它值都是对象。
1、JavaScript只有一个数字类型,它在内部被表示为64位的浮点数。没有分离出整数,所以1和1.0的值相同。
2、NaN是一个数值,表示一个不能产生正常结果的运算结果。NaN不等于任何值,包括它本身。可以用函数isNaN(number)检测NaN,但是
- 你应该更新的Java知识之常用程序库
Kai_Ge
java
在很多人眼中,Java 已经是一门垂垂老矣的语言,但并不妨碍 Java 世界依然在前进。如果你曾离开 Java,云游于其它世界,或是每日只在遗留代码中挣扎,或许是时候抬起头,看看老 Java 中的新东西。
Guava
Guava[gwɑ:və],一句话,只要你做Java项目,就应该用Guava(Github)。
guava 是 Google 出品的一套 Java 核心库,在我看来,它甚至应该
- HttpClient
120153216
httpclient
/**
* 可以传对象的请求转发,对象已流形式放入HTTP中
*/
public static Object doPost(Map<String,Object> parmMap,String url)
{
Object object = null;
HttpClient hc = new HttpClient();
String fullURL
- Django model字段类型清单
2002wmj
django
Django 通过 models 实现数据库的创建、修改、删除等操作,本文为模型中一般常用的类型的清单,便于查询和使用: AutoField:一个自动递增的整型字段,添加记录时它会自动增长。你通常不需要直接使用这个字段;如果你不指定主键的话,系统会自动添加一个主键字段到你的model。(参阅自动主键字段) BooleanField:布尔字段,管理工具里会自动将其描述为checkbox。 Cha
- 在SQLSERVER中查找消耗CPU最多的SQL
357029540
SQL Server
返回消耗CPU数目最多的10条语句
SELECT TOP 10
total_worker_time/execution_count AS avg_cpu_cost, plan_handle,
execution_count,
(SELECT SUBSTRING(text, statement_start_of
- Myeclipse项目无法部署,Undefined exploded archive location
7454103
eclipseMyEclipse
做个备忘!
错误信息为:
Undefined exploded archive location
原因:
在工程转移过程中,导致工程的配置文件出错;
解决方法:
 
- GMT时间格式转换
adminjun
GMT时间转换
普通的时间转换问题我这里就不再罗嗦了,我想大家应该都会那种低级的转换问题吧,现在我向大家总结一下如何转换GMT时间格式,这种格式的转换方法网上还不是很多,所以有必要总结一下,也算给有需要的朋友一个小小的帮助啦。
1、可以使用
SimpleDateFormat SimpleDateFormat
EEE-三位星期
d-天
MMM-月
yyyy-四位年
- Oracle数据库新装连接串问题
aijuans
oracle数据库
割接新装了数据库,客户端登陆无问题,apache/cgi-bin程序有问题,sqlnet.log日志如下:
Fatal NI connect error 12170.
VERSION INFORMATION: TNS for Linux: Version 10.2.0.4.0 - Product
- 回顾java数组复制
ayaoxinchao
java数组
在写这篇文章之前,也看了一些别人写的,基本上都是大同小异。文章是对java数组复制基础知识的回顾,算是作为学习笔记,供以后自己翻阅。首先,简单想一下这个问题:为什么要复制数组?我的个人理解:在我们在利用一个数组时,在每一次使用,我们都希望它的值是初始值。这时我们就要对数组进行复制,以达到原始数组值的安全性。java数组复制大致分为3种方式:①for循环方式 ②clone方式 ③arrayCopy方
- java web会话监听并使用spring注入
bewithme
Java Web
在java web应用中,当你想在建立会话或移除会话时,让系统做某些事情,比如说,统计在线用户,每当有用户登录时,或退出时,那么可以用下面这个监听器来监听。
import java.util.ArrayList;
import java.ut
- NoSQL数据库之Redis数据库管理(Redis的常用命令及高级应用)
bijian1013
redis数据库NoSQL
一 .Redis常用命令
Redis提供了丰富的命令对数据库和各种数据库类型进行操作,这些命令可以在Linux终端使用。
a.键值相关命令
b.服务器相关命令
1.键值相关命令
&
- java枚举序列化问题
bingyingao
java枚举序列化
对象在网络中传输离不开序列化和反序列化。而如果序列化的对象中有枚举值就要特别注意一些发布兼容问题:
1.加一个枚举值
新机器代码读分布式缓存中老对象,没有问题,不会抛异常。
老机器代码读分布式缓存中新对像,反序列化会中断,所以在所有机器发布完成之前要避免出现新对象,或者提前让老机器拥有新增枚举的jar。
2.删一个枚举值
新机器代码读分布式缓存中老对象,反序列
- 【Spark七十八】Spark Kyro序列化
bit1129
spark
当使用SparkContext的saveAsObjectFile方法将对象序列化到文件,以及通过objectFile方法将对象从文件反序列出来的时候,Spark默认使用Java的序列化以及反序列化机制,通常情况下,这种序列化机制是很低效的,Spark支持使用Kyro作为对象的序列化和反序列化机制,序列化的速度比java更快,但是使用Kyro时要注意,Kyro目前还是有些bug。
Spark
- Hybridizing OO and Functional Design
bookjovi
erlanghaskell
推荐博文:
Tell Above, and Ask Below - Hybridizing OO and Functional Design
文章中把OO和FP讲的深入透彻,里面把smalltalk和haskell作为典型的两种编程范式代表语言,此点本人极为同意,smalltalk可以说是最能体现OO设计的面向对象语言,smalltalk的作者Alan kay也是OO的最早先驱,
- Java-Collections Framework学习与总结-HashMap
BrokenDreams
Collections
开发中常常会用到这样一种数据结构,根据一个关键字,找到所需的信息。这个过程有点像查字典,拿到一个key,去字典表中查找对应的value。Java1.0版本提供了这样的类java.util.Dictionary(抽象类),基本上支持字典表的操作。后来引入了Map接口,更好的描述的这种数据结构。
&nb
- 读《研磨设计模式》-代码笔记-职责链模式-Chain Of Responsibility
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 业务逻辑:项目经理只能处理500以下的费用申请,部门经理是1000,总经理不设限。简单起见,只同意“Tom”的申请
* bylijinnan
*/
abstract class Handler {
/*
- Android中启动外部程序
cherishLC
android
1、启动外部程序
引用自:
http://blog.csdn.net/linxcool/article/details/7692374
//方法一
Intent intent=new Intent();
//包名 包名+类名(全路径)
intent.setClassName("com.linxcool", "com.linxcool.PlaneActi
- summary_keep_rate
coollyj
SUM
BEGIN
/*DECLARE minDate varchar(20) ;
DECLARE maxDate varchar(20) ;*/
DECLARE stkDate varchar(20) ;
DECLARE done int default -1;
/* 游标中 注册服务器地址 */
DE
- hadoop hdfs 添加数据目录出错
daizj
hadoophdfs扩容
由于原来配置的hadoop data目录快要用满了,故准备修改配置文件增加数据目录,以便扩容,但由于疏忽,把core-site.xml, hdfs-site.xml配置文件dfs.datanode.data.dir 配置项增加了配置目录,但未创建实际目录,重启datanode服务时,报如下错误:
2014-11-18 08:51:39,128 WARN org.apache.hadoop.h
- grep 目录级联查找
dongwei_6688
grep
在Mac或者Linux下使用grep进行文件内容查找时,如果给定的目标搜索路径是当前目录,那么它默认只搜索当前目录下的文件,而不会搜索其下面子目录中的文件内容,如果想级联搜索下级目录,需要使用一个“-r”参数:
grep -n -r "GET" .
上面的命令将会找出当前目录“.”及当前目录中所有下级目录
- yii 修改模块使用的布局文件
dcj3sjt126com
yiilayouts
方法一:yii模块默认使用系统当前的主题布局文件,如果在主配置文件中配置了主题比如: 'theme'=>'mythm', 那么yii的模块就使用 protected/themes/mythm/views/layouts 下的布局文件; 如果未配置主题,那么 yii的模块就使用 protected/views/layouts 下的布局文件, 总之默认不是使用自身目录 pr
- 设计模式之单例模式
come_for_dream
设计模式单例模式懒汉式饿汉式双重检验锁失败无序写入
今天该来的面试还没来,这个店估计不会来电话了,安静下来写写博客也不错,没事翻了翻小易哥的博客甚至与大牛们之间的差距,基础知识不扎实建起来的楼再高也只能是危楼罢了,陈下心回归基础把以前学过的东西总结一下。
*********************************
- 8、数组
豆豆咖啡
二维数组数组一维数组
一、概念
数组是同一种类型数据的集合。其实数组就是一个容器。
二、好处
可以自动给数组中的元素从0开始编号,方便操作这些元素
三、格式
//一维数组
1,元素类型[] 变量名 = new 元素类型[元素的个数]
int[] arr =
- Decode Ways
hcx2013
decode
A message containing letters from A-Z is being encoded to numbers using the following mapping:
'A' -> 1
'B' -> 2
...
'Z' -> 26
Given an encoded message containing digits, det
- Spring4.1新特性——异步调度和事件机制的异常处理
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- squid3(高命中率)缓存服务器配置
liyonghui160com
系统:centos 5.x
需要的软件:squid-3.0.STABLE25.tar.gz
1.下载squid
wget http://www.squid-cache.org/Versions/v3/3.0/squid-3.0.STABLE25.tar.gz
tar zxf squid-3.0.STABLE25.tar.gz &&
- 避免Java应用中NullPointerException的技巧和最佳实践
pda158
java
1) 从已知的String对象中调用equals()和equalsIgnoreCase()方法,而非未知对象。 总是从已知的非空String对象中调用equals()方法。因为equals()方法是对称的,调用a.equals(b)和调用b.equals(a)是完全相同的,这也是为什么程序员对于对象a和b这么不上心。如果调用者是空指针,这种调用可能导致一个空指针异常
Object unk
- 如何在Swift语言中创建http请求
shoothao
httpswift
概述:本文通过实例从同步和异步两种方式上回答了”如何在Swift语言中创建http请求“的问题。
如果你对Objective-C比较了解的话,对于如何创建http请求你一定驾轻就熟了,而新语言Swift与其相比只有语法上的区别。但是,对才接触到这个崭新平台的初学者来说,他们仍然想知道“如何在Swift语言中创建http请求?”。
在这里,我将作出一些建议来回答上述问题。常见的
- Spring事务的传播方式
uule
spring事务
传播方式:
新建事务
required
required_new - 挂起当前
非事务方式运行
supports
&nbs