python 计量经济包_计量经济与时间序列_ACF与PACF算法解析(Python,TB(交易开拓者))...

1   在时间序列中ACF图和PACF图是非常重要的两个概念,如果运用时间序列做建模、交易或者预测的话。这两个概念是必须的。

2   ACF和PACF分别为:自相关函数(系数)和偏自相关函数(系数)。

3   在许多软件中比如Eviews分析软件可以调出某一个序列的ACF图和PACF图,如下:

3.1   有时候这张图是横躺着的,不过这个不重要,反正一侧为小于0的负值范围,一侧为大于0的正值范围,均值(准确的说是坐标y轴为0,有些横着的图,会把x轴和y轴表示出来,值都在x轴上下附近呈现出来)。

3.2   红色框框部分就是ACF图,青色框框部分就是PACF图,其中对应左边的Autocorrelation就是英文单词自相关的全称;Partial Correlation就是英文单词偏自相关的全称。

3.3   我们要计算的就是这两列数值。

3.4   其中紫色箭头标注出来的是指的2倍标准误范围,后面可以用对应的数值是否超过范围来判断截尾、拖尾等信息,进而判断采用哪种模型。

3.5   这里特别注明一下在默认状态下,这两根线是如何计算的:

在大样本下(T很大的时候,这里T指的是样本的个数;其实准确的说样本符合均值为0的正太分布)。因此这里的对于ACF或PACF属于一种分位点检验,这个东西在很多baidu可以找到一个正太分布图,然后左右画线会得到99%,90%...的分位点,这里的这两根线就是指的这个。我们这里要做的是双侧对称检验,所以上下两根线分布式0±分位点的值。分位点=2倍×sqrt开方(1/T),这里的T指的是样本的个数,样本个数指的是原始的那个样本的个数,不是ACF或PACF计算完的样本个数。如果某一个值大于2倍标准误,也就是说大于正态分布左/右的95%分位点,于是,在拒绝域,则拒绝0假设(也就是拒绝均值为0的假设)

例如:样本共10个,ACF或PACF计算完毕后,他们的数量都为9个,其分为点为:2×sqrt(1/10) = 0.6324555320...,双侧检验边沿值为:(0-0.6324555320,0+0.6324555320) = [-0.6324555320,+0.6324555320](这就是两根虚线的值)。    (3.5.1)

4.    ACF和PACF算法的实现:

(持续编辑中。。。。。。。。。。)

你可能感兴趣的:(python,计量经济包)