R语言医学数据分析实战(二)数据框的操作

文章目录

  • 一、用基本包处理数据框
      • 1)查看数据框里的内容
      • 2)选取数据框的子集
      • 3)将数据框按照某个变量的值排序
      • 4)查看和删除重复数据
      • 5)在数据框中添加和删除变量
      • 6)把数据框添加到搜索路径
  • 二、使用dplyr包处理数据框
      • 1)使用slice()和filter()筛选行
      • 2)使用arrange()筛选行
      • 3)使用select()选择列
      • 4)使用mutate()添加新变量
      • 5)使用summarise()计算统计量
      • 6)使用group_by()拆分数据框
      • 7)使用传递符‘%>%’组合多个操作
  • 三、数据框的合并
      • 1)纵向合并rbind()
      • 2)横向合并cbind()
      • 3)按照某个共有变量合并
  • 四、数据框的长宽格式转换
  • 五、缺失值的处理
      • 1)识别缺失值
      • 2)探索数据框里的缺失值
      • 3)填充缺失值
  • 六、处理大型数据集的策略
      • 1)清理工作空间
      • 2)模拟一个大型数据集
      • 3)剔除不需要的变量
      • 4)选取数据集的一个随机样本

一、用基本包处理数据框

导入Familydata数据:

> rm(list=ls()) #清空工作空间
> #install.packages("epiDisplay")
> library(epiDisplay)
> data(Familydata)
> ls() #查看工作空间
[1] "Familydata"

1)查看数据框里的内容

Familydata
head(Familydata)
tail(Familydata)
names(Familydata) #列出数据框中所有变量的名字
str(Familydata) #查看数据框结构
attributes(Familydata) #显示数据框属性的全部信息
#添加两个标签
attr(Familydata,"var.labels")[1]<-"ID num"
attr(Familydata,"var.labels")[6]<-"Gender"
attributes(Familydata)$var.labels
des(Familydata) #str()简化版
Anthropometric and financial data of a hypothetical family 
 No. of observations =  11 
  Variable      Class           Description     
1 code          character       ID num          
2 age           integer         Age(yr)         
3 ht            integer         Ht(cm.)         
4 wt            integer         Wt(kg.)         
5 money         integer         Pocket money(B.)
6 sex           factor          Gender 

2)选取数据框的子集

> Familydata[,3]
 [1] 120 172 163 158 153 148 160 163 170 155 167
> Familydata$ht
 [1] 120 172 163 158 153 148 160 163 170 155 167
> Familydata[1:3,c(3,4,6)]
   ht wt sex
1 120 22   F
2 172 52   M
3 163 71   M
> subset(Familydata,sex=="F") #选取子集
   code age  ht wt money sex
1     K   6 120 22     5   F
4     I  18 158 51   200   F
5     C  69 153 51   300   F
6     B  72 148 60   500   F
7     G  46 160 50   500   F
8     H  42 163 55   600   F
10    F  47 155 53  2000   F
> subset(Familydata,sex=="F",select = c(ht,wt))
    ht wt
1  120 22
4  158 51
5  153 51
6  148 60
7  160 50
8  163 55
10 155 53
> sample.rows<-sample(1:nrow(Familydata),size = 3,replace = FALSE) #sample():随机抽样
> sample.rows
[1] 10  7  4
> Familydata[sample.rows,]
   code age  ht wt money sex
10    F  47 155 53  2000   F
7     G  46 160 50   500   F
4     I  18 158 51   200   F

3)将数据框按照某个变量的值排序

> Familydata[order(Familydata$age),] #从小到大
   code age  ht wt money sex
1     K   6 120 22     5   F
2     J  16 172 52    50   M
4     I  18 158 51   200   F
8     H  42 163 55   600   F
7     G  46 160 50   500   F
10    F  47 155 53  2000   F
11    E  49 167 64  5000   M
9     D  58 170 67  2000   M
5     C  69 153 51   300   F
6     B  72 148 60   500   F
3     A  80 163 71   100   M
> Familydata[order(Familydata$age,decreasing = TRUE),] #从大到小
   code age  ht wt money sex
3     A  80 163 71   100   M
6     B  72 148 60   500   F
5     C  69 153 51   300   F
9     D  58 170 67  2000   M
11    E  49 167 64  5000   M
10    F  47 155 53  2000   F
7     G  46 160 50   500   F
8     H  42 163 55   600   F
4     I  18 158 51   200   F
2     J  16 172 52    50   M
1     K   6 120 22     5   F

4)查看和删除重复数据

> duplicated(Familydata$age)
 [1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
> duplicated(Familydata$sex)
 [1] FALSE FALSE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE  TRUE
> any(duplicated(Familydata$sex))
[1] TRUE
> table(duplicated(Familydata$sex)) 
FALSE  TRUE 
    2     9 

构造重复值以进行后续操作:使用which()来查看重复值所在行

> Familydata1<-Familydata
> Familydata1[12,]<-Familydata1[2,]
> Familydata1
   code age  ht wt money sex
1     K   6 120 22     5   F
2     J  16 172 52    50   M
3     A  80 163 71   100   M
4     I  18 158 51   200   F
5     C  69 153 51   300   F
6     B  72 148 60   500   F
7     G  46 160 50   500   F
8     H  42 163 55   600   F
9     D  58 170 67  2000   M
10    F  47 155 53  2000   F
11    E  49 167 64  5000   M
12    J  16 172 52    50   M
> table(duplicated(Familydata1$code))
FALSE  TRUE 
   11     1 
> which(duplicated(Familydata1$age)) #查看重复值所在行
[1] 12

删除重复的行:

> #删除重复行
> unique.code<-Familydata1[!duplicated(Familydata1$code),]
> identical(unique.code,Familydata) #比较与原数据是否完全相同
[1] TRUE

5)在数据框中添加和删除变量

添加变量:

> #添加行
> Familydata2<-Familydata
> Familydata2$log10money<-log10(Familydata2$money)
> names(Familydata2)
[1] "code"       "age"        "ht"         "wt"         "money"      "sex"        "log10money"
> Familydata2<-Familydata
> Familydata2<-transform(Familydata2,log10money=log10(money))
> names(Familydata2)
[1] "code"       "age"        "ht"         "wt"         "money"      "sex"        "log10money"

删除变量:

#删除变量
Familydata2[,-7]
Familydata2[-7,]

6)把数据框添加到搜索路径

> #把数据框添加到搜索路径
> attach(Familydata2)
> search()
 [1] ".GlobalEnv"         "Familydata2"        "package:epiDisplay" "package:nnet"       "package:MASS"      
 [6] "package:survival"   "package:foreign"    "tools:rstudio"      "package:stats"      "package:graphics"  
[11] "package:grDevices"  "package:utils"      "package:datasets"   "package:methods"    "Autoloads"         
[16] "package:base"      
> summary(age) #直接使用变量
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
   6.00   30.00   47.00   45.73   63.50   80.00 
> with(infert,summary(age))
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  21.00   28.00   31.00   31.50   35.25   44.00 
> detach(Familydata2) #将不需要的数据框从搜索路径中移除
> search()
 [1] ".GlobalEnv"         "package:epiDisplay" "package:nnet"       "package:MASS"       "package:survival"  
 [6] "package:foreign"    "tools:rstudio"      "package:stats"      "package:graphics"   "package:grDevices" 
[11] "package:utils"      "package:datasets"   "package:methods"    "Autoloads"          "package:base" 

二、使用dplyr包处理数据框

dplyr包:以一种统一的规范更高效地处理数据框。

下面以MASS包中的birthwt为例。

#导入birthwt数据
library(dplyr)
data(birthwt,package = "MASS")
birthwt

1)使用slice()和filter()筛选行

slice()操作:按照行号选择行。

> slice(birthwt,2:5)
   low age lwt race smoke ptl ht ui ftv  bwt
86   0  33 155    3     0   0  0  0   3 2551
87   0  20 105    1     1   0  0  0   1 2557
88   0  21 108    1     1   0  0  1   2 2594
89   0  18 107    1     1   0  0  1   0 2600

filter()筛选操作:

> filter(birthwt,age>35)
    low age lwt race smoke ptl ht ui ftv  bwt
108   0  36 202    1     0   0  0  0   1 2836
183   0  36 175    1     0   0  0  0   0 3600
226   0  45 123    1     0   0  0  0   1 4990
> filter(birthwt,bwt<2500|bwt>4000)
    low age lwt race smoke ptl ht ui ftv  bwt
218   0  26 160    3     0   0  0  0   0 4054
219   0  21 115    1     0   0  0  0   1 4054
220   0  22 129    1     0   0  0  0   0 4111
221   0  25 130    1     0   0  0  0   2 4153
222   0  31 120    1     0   0  0  0   2 4167
223   0  35 170    1     0   1  0  0   1 4174
224   0  19 120    1     1   0  0  0   0 4238
.............................................

> filter(birthwt,age>35,bwt<2500|bwt>4000) #逗号分隔多个条件
    low age lwt race smoke ptl ht ui ftv  bwt
226   0  45 123    1     0   0  0  0   1 4990

2)使用arrange()筛选行

arrange():排序。

arrange(birthwt,bwt) #默认从小到大排序
arrange(birthwt,bwt,age) #当第一个变量相等时,按照第二个变量进行排序
#从大到小排序
arrange(birthwt,desc(bwt)) 
arrange(birthwt,-bwt)

3)使用select()选择列

> select(birthwt,bwt,age,race,smoke) #后期为避免混淆dplyr::select()
     bwt age race smoke
85  2523  19    2     0
86  2551  33    3     0
87  2557  20    1     1
88  2594  21    1     1
89  2600  18    1     1
91  2622  21    3     0
92  2637  22    1     0

4)使用mutate()添加新变量

> mutate(birthwt,lwr.kg=0.4536*lwt) #添加新变量
    low age lwt race smoke ptl ht ui ftv  bwt   lwr.kg
85    0  19 182    2     0   0  0  1   0 2523  82.5552
86    0  33 155    3     0   0  0  0   3 2551  70.3080
87    0  20 105    1     1   0  0  0   1 2557  47.6280
88    0  21 108    1     1   0  0  1   2 2594  48.9888
> mutate(birthwt,lwt=0.4536*lwt) #替换原来的变量
    low age      lwt race smoke ptl ht ui ftv  bwt
85    0  19  82.5552    2     0   0  0  1   0 2523
86    0  33  70.3080    3     0   0  0  0   3 2551
87    0  20  47.6280    1     1   0  0  0   1 2557
88    0  21  48.9888    1     1   0  0  1   2 2594

5)使用summarise()计算统计量

> summarise(birthwt,mwan.bwt=mean(bwt),sd.bwt=sd(bwt))
  mwan.bwt   sd.bwt
1 2944.587 729.2143

6)使用group_by()拆分数据框

> group_by(birthwt,race)
# A tibble: 189 x 10
# Groups:   race [3]
     low   age   lwt  race smoke   ptl    ht    ui   ftv   bwt
   <int> <int> <int> <int> <int> <int> <int> <int> <int> <int>
 1     0    19   182     2     0     0     0     1     0  2523
 2     0    33   155     3     0     0     0     0     3  2551
 3     0    20   105     1     1     0     0     0     1  2557
 4     0    21   108     1     1     0     0     1     2  2594
 5     0    18   107     1     1     0     0     1     0  2600
 6     0    21   124     3     0     0     0     0     0  2622
 7     0    22   118     1     0     0     0     0     1  2637
 8     0    17   103     3     0     0     0     0     1  2637
 9     0    29   123     1     1     0     0     0     1  2663
10     0    26   113     1     1     0     0     0     0  2665
# ... with 179 more rows

7)使用传递符‘%>%’组合多个操作

> birthwt %>%
+ mutate(race=factor(race,labels = c("White","Black","Other")))%>%
+ group_by(race)%>%
+ summarise(mean(bwt))
# A tibble: 3 x 2
  race  `mean(bwt)`
  <fct>       <dbl>
1 White       3103.
2 Black       2720.
3 Other       2805.

三、数据框的合并

> data1 <- data.frame(id = 1:5, 
+                     sex = c("female", "male", "male", "female", "male"),
+                     age = c(32, 46, 25, 42, 29))
> data1
  id    sex age
1  1 female  32
2  2   male  46
3  3   male  25
4  4 female  42
5  5   male  29
> data2 <- data.frame(id = 6:10, 
+                     sex = c("male", "female", "male", "male", "female"),
+                     age = c(52, 36, 28, 34, 26))
> data2
  id    sex age
1  6   male  52
2  7 female  36
3  8   male  28
4  9   male  34
5 10 female  26

1)纵向合并rbind()

> rbind(data1,data2)
   id    sex age
1   1 female  32
2   2   male  46
3   3   male  25
4   4 female  42
5   5   male  29
6   6   male  52
7   7 female  36
8   8   male  28
9   9   male  34
10 10 female  26

2)横向合并cbind()

> data3 <- data.frame(days = c(28, 57, 15, 7, 19),
+                     outcome = c("discharge", "dead", "discharge", "transfer", "discharge"))
> data3
  days   outcome
1   28 discharge
2   57      dead
3   15 discharge
4    7  transfer
5   19 discharge
> cbind(data1,data3)
  id    sex age days   outcome
1  1 female  32   28 discharge
2  2   male  46   57      dead
3  3   male  25   15 discharge
4  4 female  42    7  transfer
5  5   male  29   19 discharge

3)按照某个共有变量合并

merge():

> data4 <- data.frame(id = c(2, 1, 3, 5, 4), 
+                     outcome = c("discharge", "dead", "discharge", "transfer", "discharge"))
> data4
  id   outcome
1  2 discharge
2  1      dead
3  3 discharge
4  5  transfer
5  4 discharge
> mydata<-merge(data1,data4,by="id")
> mydata
  id    sex age   outcome
1  1 female  32      dead
2  2   male  46 discharge
3  3   male  25 discharge
4  4 female  42 discharge
5  5   male  29  transfer

full_join():

> mydata<-full_join(data1,data4,by="id")
> mydata
  id    sex age   outcome
1  1 female  32      dead
2  2   male  46 discharge
3  3   male  25 discharge
4  4 female  42 discharge
5  5   male  29  transfer

四、数据框的长宽格式转换

> data(Indometh)
> wide <- reshape(Indometh, v.names = "conc", idvar = "Subject", timevar = "time", direction = "wide")
> wide
   Subject conc.0.25 conc.0.5 conc.0.75 conc.1 conc.1.25 conc.2 conc.3 conc.4 conc.5 conc.6 conc.8
1        1      1.50     0.94      0.78   0.48      0.37   0.19   0.12   0.11   0.08   0.07   0.05
12       2      2.03     1.63      0.71   0.70      0.64   0.36   0.32   0.20   0.25   0.12   0.08
23       3      2.72     1.49      1.16   0.80      0.80   0.39   0.22   0.12   0.11   0.08   0.08
34       4      1.85     1.39      1.02   0.89      0.59   0.40   0.16   0.11   0.10   0.07   0.07
45       5      2.05     1.04      0.81   0.39      0.30   0.23   0.13   0.11   0.08   0.10   0.06
56       6      2.31     1.44      1.03   0.84      0.64   0.42   0.24   0.17   0.13   0.10   0.09
> long <- reshape(wide, idvar = "Subject", varying = list(2:12),
+                 v.names = "conc", direction = "long")
> head(long, 12)
    Subject time conc
1.1       1    1 1.50
2.1       2    1 2.03
3.1       3    1 2.72
4.1       4    1 1.85
5.1       5    1 2.05
6.1       6    1 2.31
1.2       1    2 0.94
2.2       2    2 1.63
3.2       3    2 1.49
4.2       4    2 1.39
5.2       5    2 1.04
6.2       6    2 1.44

五、缺失值的处理

1)识别缺失值

> height <- c(100, 150, NA, 160)
> height
[1] 100 150  NA 160
> is.na(height)
[1] FALSE FALSE  TRUE FALSE
> table(is.na(height))
FALSE  TRUE 
    3     1 

任何包含空值的统计量计算结果为NA:

> mean(height)
[1] NA

计算统计量需要移除NA:

> mean(height,na.rm = TRUE)
[1] 136.6667
> mean(na.omit(height))
[1] 136.6667
> summary(height) #summary()会自动忽略NA
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
  100.0   125.0   150.0   136.7   155.0   160.0       1 

2)探索数据框里的缺失值

missForest包里的函数prodNA():随机生成NA

> library(missForest)
> data(iris)
> set.seed(1234)
> iris.miss<-prodNA(iris)
> summary(iris.miss)
  Sepal.Length    Sepal.Width     Petal.Length    Petal.Width          Species  
 Min.   :4.300   Min.   :2.000   Min.   :1.000   Min.   :0.100   setosa    :41  
 1st Qu.:5.100   1st Qu.:2.800   1st Qu.:1.600   1st Qu.:0.300   versicolor:45  
 Median :5.700   Median :3.000   Median :4.400   Median :1.300   virginica :45  
 Mean   :5.787   Mean   :3.059   Mean   :3.822   Mean   :1.182   NA's      :19  
 3rd Qu.:6.400   3rd Qu.:3.300   3rd Qu.:5.100   3rd Qu.:1.800                  
 Max.   :7.900   Max.   :4.400   Max.   :6.900   Max.   :2.500                  
 NA's   :12      NA's   :16      NA's   :12      NA's   :16 
 #绘图说明缺失值
library(VIM)
aggr(iris.miss, prop = FALSE, numbers = TRUE, cex.axis = 0.7) 

R语言医学数据分析实战(二)数据框的操作_第1张图片

3)填充缺失值

删除缺失值:

> nrow(iris.miss)
[1] 150
> iris.sub<-na.omit(iris.miss)
> nrow(iris.sub)
[1] 97

> iris.sub<-iris.miss[complete.cases(iris.miss),]
> nrow(iris.sub)
[1] 97

使用特定数值替换缺失值:

> iris.miss1<-iris.miss
> Seqal.Length.Mean<-mean(na.omit(iris.miss$Sepal.Length))
> Seqal.Length.Mean
[1] 5.786957
> iris.miss1$Sepal.Length[is.na(iris.miss1$Sepal.Length)]<-Seqal.Length.Mean
> summary((iris$Sepal.Length-iris.miss1$Sepal.Length)/iris$Sepal.Length)
     Min.   1st Qu.    Median      Mean   3rd Qu.      Max. 
-0.258034  0.000000  0.000000  0.006871  0.000000  0.248447 

多重插补:

library(mice)
imputed.data <- mice(iris.miss, seed = 1234)
summary(imputed.data)

imputed.data$imp$Sepal.Length
complete.data <- complete(imputed.data, 3)
summary((iris$Sepal.Length - complete.data$Sepal.Length)/iris$Sepal.Length)
table(iris$Species, complete.data$Species)

六、处理大型数据集的策略

1)清理工作空间

> rm(list=ls(all=TRUE))

PS:其中all默认参数为FALSE,设为TRUE是为了清除包括隐藏对象在内的所有对象。

2)模拟一个大型数据集

> bigdata<-as.data.frame(matrix(rnorm(50000*200),ncol = 200))
> vars<-NULL
> for(i in letters[1:20]){
+   for(j in 1:10){
+     vars<-c(vars,paste(i,j,sep = "_"))
+   }
+ }
> names(bigdata)<-vars
> names(bigdata)
  [1] "a_1"  "a_2"  "a_3"  "a_4"  "a_5"  "a_6"  "a_7"  "a_8"  "a_9"  "a_10" "b_1"  "b_2"  "b_3"  "b_4"  "b_5" 
 [16] "b_6"  "b_7"  "b_8"  "b_9"  "b_10" "c_1"  "c_2"  "c_3"  "c_4"  "c_5"  "c_6"  "c_7"  "c_8"  "c_9"  "c_10"
 [31] "d_1"  "d_2"  "d_3"  "d_4"  "d_5"  "d_6"  "d_7"  "d_8"  "d_9"  "d_10" "e_1"  "e_2"  "e_3"  "e_4"  "e_5" 
 [46] "e_6"  "e_7"  "e_8"  "e_9"  "e_10" "f_1"  "f_2"  "f_3"  "f_4"  "f_5"  "f_6"  "f_7"  "f_8"  "f_9"  "f_10"
 [61] "g_1"  "g_2"  "g_3"  "g_4"  "g_5"  "g_6"  "g_7"  "g_8"  "g_9"  "g_10" "h_1"  "h_2"  "h_3"  "h_4"  "h_5" 
 [76] "h_6"  "h_7"  "h_8"  "h_9"  "h_10" "i_1"  "i_2"  "i_3"  "i_4"  "i_5"  "i_6"  "i_7"  "i_8"  "i_9"  "i_10"
 [91] "j_1"  "j_2"  "j_3"  "j_4"  "j_5"  "j_6"  "j_7"  "j_8"  "j_9"  "j_10" "k_1"  "k_2"  "k_3"  "k_4"  "k_5" 
[106] "k_6"  "k_7"  "k_8"  "k_9"  "k_10" "l_1"  "l_2"  "l_3"  "l_4"  "l_5"  "l_6"  "l_7"  "l_8"  "l_9"  "l_10"
[121] "m_1"  "m_2"  "m_3"  "m_4"  "m_5"  "m_6"  "m_7"  "m_8"  "m_9"  "m_10" "n_1"  "n_2"  "n_3"  "n_4"  "n_5" 
[136] "n_6"  "n_7"  "n_8"  "n_9"  "n_10" "o_1"  "o_2"  "o_3"  "o_4"  "o_5"  "o_6"  "o_7"  "o_8"  "o_9"  "o_10"
[151] "p_1"  "p_2"  "p_3"  "p_4"  "p_5"  "p_6"  "p_7"  "p_8"  "p_9"  "p_10" "q_1"  "q_2"  "q_3"  "q_4"  "q_5" 
[166] "q_6"  "q_7"  "q_8"  "q_9"  "q_10" "r_1"  "r_2"  "r_3"  "r_4"  "r_5"  "r_6"  "r_7"  "r_8"  "r_9"  "r_10"
[181] "s_1"  "s_2"  "s_3"  "s_4"  "s_5"  "s_6"  "s_7"  "s_8"  "s_9"  "s_10" "t_1"  "t_2"  "t_3"  "t_4"  "t_5" 
[196] "t_6"  "t_7"  "t_8"  "t_9"  "t_10"

3)剔除不需要的变量

> library(dplyr)
> library(tidyselect)
> subdata1<-select(bigdata,starts_with("a"))
> names(subdata1)
 [1] "a_1"  "a_2"  "a_3"  "a_4"  "a_5"  "a_6"  "a_7"  "a_8"  "a_9"  "a_10"
> subdata2<-select(bigdata,ends_with("2"))
> names(subdata2)
 [1] "a_2" "b_2" "c_2" "d_2" "e_2" "f_2" "g_2" "h_2" "i_2" "j_2" "k_2" "l_2" "m_2" "n_2" "o_2" "p_2" "q_2" "r_2"
[19] "s_2" "t_2"
> subdata3<-select_at(bigdata,vars(starts_with("a"),starts_with("b")))
> names(subdata3)
 [1] "a_1"  "a_2"  "a_3"  "a_4"  "a_5"  "a_6"  "a_7"  "a_8"  "a_9"  "a_10" "b_1"  "b_2"  "b_3"  "b_4"  "b_5" 
[16] "b_6"  "b_7"  "b_8"  "b_9"  "b_10"
> subdata4<-select_at(bigdata,vars(contains("1")))
> names(subdata4)
 [1] "a_1"  "a_10" "b_1"  "b_10" "c_1"  "c_10" "d_1"  "d_10" "e_1"  "e_10" "f_1"  "f_10" "g_1"  "g_10" "h_1" 
[16] "h_10" "i_1"  "i_10" "j_1"  "j_10" "k_1"  "k_10" "l_1"  "l_10" "m_1"  "m_10" "n_1"  "n_10" "o_1"  "o_10"
[31] "p_1"  "p_10" "q_1"  "q_10" "r_1"  "r_10" "s_1"  "s_10" "t_1"  "t_10"
> #剔除15结尾的变量
> subdata5<-select_at(bigdata,vars(-contains("1"),-contains("5")))
> names(subdata5)
  [1] "a_2" "a_3" "a_4" "a_6" "a_7" "a_8" "a_9" "b_2" "b_3" "b_4" "b_6" "b_7" "b_8" "b_9" "c_2" "c_3" "c_4" "c_6"
 [19] "c_7" "c_8" "c_9" "d_2" "d_3" "d_4" "d_6" "d_7" "d_8" "d_9" "e_2" "e_3" "e_4" "e_6" "e_7" "e_8" "e_9" "f_2"
 [37] "f_3" "f_4" "f_6" "f_7" "f_8" "f_9" "g_2" "g_3" "g_4" "g_6" "g_7" "g_8" "g_9" "h_2" "h_3" "h_4" "h_6" "h_7"
 [55] "h_8" "h_9" "i_2" "i_3" "i_4" "i_6" "i_7" "i_8" "i_9" "j_2" "j_3" "j_4" "j_6" "j_7" "j_8" "j_9" "k_2" "k_3"
 [73] "k_4" "k_6" "k_7" "k_8" "k_9" "l_2" "l_3" "l_4" "l_6" "l_7" "l_8" "l_9" "m_2" "m_3" "m_4" "m_6" "m_7" "m_8"
 [91] "m_9" "n_2" "n_3" "n_4" "n_6" "n_7" "n_8" "n_9" "o_2" "o_3" "o_4" "o_6" "o_7" "o_8" "o_9" "p_2" "p_3" "p_4"
[109] "p_6" "p_7" "p_8" "p_9" "q_2" "q_3" "q_4" "q_6" "q_7" "q_8" "q_9" "r_2" "r_3" "r_4" "r_6" "r_7" "r_8" "r_9"
[127] "s_2" "s_3" "s_4" "s_6" "s_7" "s_8" "s_9" "t_2" "t_3" "t_4" "t_6" "t_7" "t_8" "t_9"

4)选取数据集的一个随机样本

> sampledata1<-sample_n(subdata5,size=500)
> nrow(sampledata1)
[1] 500
> sampledata2<-sample_frac(subdata5,size=0.02)
> nrow(sampledata2)
[1] 1000

你可能感兴趣的:(R语言从入门到放弃,r语言,数据分析,开发语言)