本专栏用于记录关于深度学习的笔记,不光方便自己复习与查阅,同时也希望能给您解决一些关于深度学习的相关问题,并提供一些微不足道的人工神经网络模型设计思路。
专栏地址:「深度学习一遍过」必修篇
目录
项目 GitHub 地址
项目心得
项目代码
net.py
#!/usr/bin/python
# -*- coding:utf-8 -*-
# ------------------------------------------------- #
# 作者:赵泽荣
# 时间:2021年9月9日(农历八月初三)
# 个人站点:1.https://zhao302014.github.io/
# 2.https://blog.csdn.net/IT_charge/
# 个人GitHub地址:https://github.com/zhao302014
# ------------------------------------------------- #
import torch
from torch import nn
# ------------------------------------------------------------------------------- #
# 自己搭建一个 LeNet-5 模型结构
# · LeNet-5 是 Yann LeCun 在 1998 年设计的用于手写数字识别的卷积神经网络
# · 所有卷积核均为 5×5,步长为 1
# · 所有池化方法为平均池化
# · 所有激活函数采用 Sigmoid
# · 该模型共 7 层(3 个卷积层,2 个池化层,2 个全连接层)
# · LeNet5 网络结构被称为第 1 个典型的 CNN
# ------------------------------------------------------------------------------- #
class MyLeNet5(nn.Module):
def __init__(self):
super(MyLeNet5, self).__init__()
self.c1 = nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, padding=2)
self.Sigmoid = nn.Sigmoid()
self.s2 = nn.AvgPool2d(2)
self.c3 = nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5)
self.s4 = nn.AvgPool2d(2)
self.flatten = nn.Flatten()
self.c5 = nn.Conv2d(in_channels=16, out_channels=120, kernel_size=5)
self.f6 = nn.Linear(120, 84)
self.output = nn.Linear(84, 10)
def forward(self, x): # 输入shape: torch.Size([1, 1, 28, 28])
x = self.Sigmoid(self.c1(x)) # shape: torch.Size([1, 6, 28, 28])
x = self.s2(x) # shape: torch.Size([1, 6, 14, 14])
x = self.Sigmoid(self.c3(x)) # shape: torch.Size([1, 16, 10, 10])
x = self.s4(x) # shape: torch.Size([1, 16, 5, 5]
x = self.c5(x) # shape: torch.Size([1, 120, 1, 1])
x = self.flatten(x) # shape: torch.Size([1, 120])
x = self.f6(x) # shape: torch.Size([1, 84])
x = self.output(x) # shape: torch.Size([1, 10])
return x
if __name__ == '__main__':
x = torch.rand([1, 1, 28, 28])
model = MyLeNet5()
y = model(x)
train.py
#!/usr/bin/python
# -*- coding:utf-8 -*-
# ------------------------------------------------- #
# 作者:赵泽荣
# 时间:2021年9月9日(农历八月初三)
# 个人站点:1.https://zhao302014.github.io/
# 2.https://blog.csdn.net/IT_charge/
# 个人GitHub地址:https://github.com/zhao302014
# ------------------------------------------------- #
import torch
from torch import nn
from net import MyLeNet5
from torch.optim import lr_scheduler
from torchvision import datasets, transforms
data_transform = transforms.Compose([
transforms.ToTensor() # 仅对数据做转换为 tensor 格式操作
])
# 加载训练数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=data_transform, download=True)
# 给训练集创建一个数据集加载器
train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=16, shuffle=True)
# 加载测试数据集
test_dataset = datasets.MNIST(root='./data', train=False, transform=data_transform, download=True)
# 给测试集创建一个数据集加载器
test_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=16, shuffle=True)
# 如果显卡可用,则用显卡进行训练
device = "cuda" if torch.cuda.is_available() else 'cpu'
# 调用 net 里定义的模型,如果 GPU 可用则将模型转到 GPU
model = MyLeNet5().to(device)
# 定义损失函数(交叉熵损失)
loss_fn = nn.CrossEntropyLoss()
# 定义优化器(SGD:随机梯度下降)
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3, momentum=0.9)
# 学习率每隔 10 个 epoch 变为原来的 0.1
lr_scheduler = lr_scheduler.StepLR(optimizer, step_size=10, gamma=0.1)
# 定义训练函数
def train(dataloader, model, loss_fn, optimizer):
loss, current, n = 0.0, 0.0, 0
for batch, (X, y) in enumerate(dataloader):
# 前向传播
X, y = X.to(device), y.to(device)
output = model(X)
cur_loss = loss_fn(output, y)
_, pred = torch.max(output, axis=1)
cur_acc = torch.sum(y == pred) / output.shape[0]
# 反向传播
optimizer.zero_grad()
cur_loss.backward()
optimizer.step()
loss += cur_loss.item()
current += cur_acc.item()
n = n + 1
print('train_loss:' + str(loss / n))
print('train_acc:' + str(current / n))
# 定义测试函数
def test(dataloader, model, loss_fn):
# 将模型转换为验证模式
model.eval()
loss, current, n = 0.0, 0.0, 0
# 非训练,推理期用到(测试时模型参数不用更新,所以 no_grad)
with torch.no_grad():
for batch, (X, y) in enumerate(dataloader):
X, y = X.to(device), y.to(device)
output = model(X)
cur_loss = loss_fn(output, y)
_, pred = torch.max(output, axis=1)
cur_acc = torch.sum(y == pred) / output.shape[0]
loss += cur_loss.item()
current += cur_acc.item()
n = n + 1
print('test_loss:' + str(loss / n))
print('test_acc:' + str(current / n))
# 开始训练
epoch = 100
for t in range(epoch):
lr_scheduler.step()
print(f"Epoch {t + 1}\n----------------------")
train(train_dataloader, model, loss_fn, optimizer)
test(test_dataloader, model, loss_fn)
torch.save(model.state_dict(), "save_model/{}model.pth".format(t)) # 模型保存
print("Done!")
test.py
#!/usr/bin/python
# -*- coding:utf-8 -*-
# ------------------------------------------------- #
# 作者:赵泽荣
# 时间:2021年9月9日(农历八月初三)
# 个人站点:1.https://zhao302014.github.io/
# 2.https://blog.csdn.net/IT_charge/
# 个人GitHub地址:https://github.com/zhao302014
# ------------------------------------------------- #
import torch
from net import MyLeNet5
from torch.autograd import Variable
from torchvision import datasets, transforms
from torchvision.transforms import ToPILImage
data_transform = transforms.Compose([
transforms.ToTensor() # 仅对数据做转换为 tensor 格式操作
])
# 加载训练数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=data_transform, download=True)
# 给训练集创建一个数据集加载器
train_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=16, shuffle=True)
# 加载测试数据集
test_dataset = datasets.MNIST(root='./data', train=False, transform=data_transform, download=True)
# 给测试集创建一个数据集加载器
test_dataloader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=16, shuffle=True)
# 如果显卡可用,则用显卡进行训练
device = "cuda" if torch.cuda.is_available() else 'cpu'
# 调用 net 里定义的模型,如果 GPU 可用则将模型转到 GPU
model = MyLeNet5().to(device)
# 加载 train.py 里训练好的模型
model.load_state_dict(torch.load("./save_model/99model.pth"))
# 获取预测结果
classes = [
"0",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
]
# 把 tensor 转成 Image,方便可视化
show = ToPILImage()
# 进入验证阶段
model.eval()
# 对 test_dataset 里 10000 张手写数字图片进行推理
for i in range(len(test_dataset)):
x, y = test_dataset[i][0], test_dataset[i][1]
# tensor格式数据可视化
show(x).show()
# 扩展张量维度为 4 维
x = Variable(torch.unsqueeze(x, dim=0).float(), requires_grad=False).to(device)
with torch.no_grad():
pred = model(x)
# 得到预测类别中最高的那一类,再把最高的这一类对应classes中的哪一个标签
predicted, actual = classes[torch.argmax(pred[0])], classes[y]
# 最终输出预测值与真实值
print(f'Predicted: "{predicted}", Actual: "{actual}"')