ocr 神经网络,神经网络crop

如何通过人工神经网络实现图像识别

人工神经网络(ArtificialNeuralNetworks)(简称ANN)系统从20世纪40年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用。

尤其是基于误差反向传播(ErrorBackPropagation)算法的多层前馈网络(Multiple-LayerFeedforwardNetwork)(简称BP网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。

目标识别是模式识别领域的一项传统的课题,这是因为目标识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而目标识别的研究仍具有理论和实践意义。

这里讨论的是将要识别的目标物体用成像头(红外或可见光等)摄入后形成的图像信号序列送入计算机,用神经网络识别图像的问题。

一、BP神经网络BP网络是采用Widrow-Hoff学习算法和非线性可微转移函数的多层网络。一个典型的BP网络采用的是梯度下降算法,也就是Widrow-Hoff算法所规定的。

backpropagation就是指的为非线性多层网络计算梯度的方法。一个典型的BP网络结构如图所示。我们将它用向量图表示如下图所示。

其中:对于第k个模式对,输出层单元的j的加权输入为该单元的实际输出为而隐含层单元i的加权输入为该单元的实际输出为函数f为可微分递减函数其算法描述如下:(1)初始化网络及学习参数,如设置网络初始权矩阵、学习因子等。

(2)提供训练模式,训练网络,直到满足学习要求。(3)前向传播过程:对给定训练模式输入,计算网络的输出模式,并与期望模式比较,若有误差,则执行(4);否则,返回(2)。

(4)后向传播过程:a.计算同一层单元的误差;b.修正权值和阈值;c.返回(2)二、BP网络隐层个数的选择对于含有一个隐层的三层BP网络可以实现输入到输出的任何非线性映射。

增加网络隐层数可以降低误差,提高精度,但同时也使网络复杂化,增加网络的训练时间。误差精度的提高也可以通过增加隐层结点数来实现。一般情况下,应优先考虑增加隐含层的结点数。

三、隐含层神经元个数的选择当用神经网络实现网络映射时,隐含层神经元个数直接影响着神经网络的学习能力和归纳能力。

隐含层神经元数目较少时,网络每次学习的时间较短,但有可能因为学习不足导致网络无法记住全部学习内容;隐含层神经元数目较大时,学习能力增强,网络每次学习的时间较长,网络的存储容量随之变大,导致网络对未知输入的归纳能力下降,因为对隐含层神经元个数的选择尚无理论上的指导,一般凭经验确定。

四、神经网络图像识别系统人工神经网络方法实现模式识别,可处理一些环境信息十分复杂,背景知识不清楚,推理规则不明确的问题,允许样品有较大的缺损、畸变,神经网络方法的缺点是其模型在不断丰富完善中,目前能识别的模式类还不够多,神经网络方法允许样品有较大的缺损和畸变,其运行速度快,自适应性能好,具有较高的分辨率。

神经网络的图像识别系统是神经网络模式识别系统的一种,原理是一致的。一般神经网络图像识别系统由预处理,特征提取和神经网络分类器组成。预处理就是将原始数据中的无用信息删除,平滑,二值化和进行幅度归一化等。

神经网络图像识别系统中的特征提取部分不一定存在,这样就分为两大类:①有特征提取部分的:这一类系统实际上是传统方法与神经网络方法技术的结合,这种方法可以充分利用人的经验来获取模式特征以及神经网络分类能力来识别目标图像。

特征提取必须能反应整个图像的特征。但它的抗干扰能力不如第2类。

②无特征提取部分的:省去特征抽取,整副图像直接作为神经网络的输入,这种方式下,系统的神经网络结构的复杂度大大增加了,输入模式维数的增加导致了网络规模的庞大。

此外,神经网络结构需要完全自己消除模式变形的影响。但是网络的抗干扰性能好,识别率高。当BP网用于分类时,首先要选择各类的样本进行训练,每类样本的个数要近似相等。

其原因在于一方面防止训练后网络对样本多的类别响应过于敏感,而对样本数少的类别不敏感。另一方面可以大幅度提高训练速度,避免网络陷入局部最小点。

由于BP网络不具有不变识别的能力,所以要使网络对模式的平移、旋转、伸缩具有不变性,要尽可能选择各种可能情况的样本。

例如要选择不同姿态、不同方位、不同角度、不同背景等有代表性的样本,这样可以保证网络有较高的识别率。

构造神经网络分类器首先要选择适当的网络结构:神经网络分类器的输入就是图像的特征向量;神经网络分类器的输出节点应该是类别数。隐层数要选好,每层神经元数要合适,目前有很多采用一层隐层的网络结构。

然后要选择适当的学习算法,这样才会有很好的识别效果。

在学习阶段应该用大量的样本进行训练学习,通过样本的大量学习对神经网络的各层网络的连接权值进行修正,使其对样本有正确的识别结果,这就像人记数字一样,网络中的神经元就像是人脑细胞,权值的改变就像是人脑细胞的相互作用的改变,神经网络在样本学习中就像人记数字一样,学习样本时的网络权值调整就相当于人记住各个数字的形象,网络权值就是网络记住的内容,网络学习阶段就像人由不认识数字到认识数字反复学习过程是一样的。

神经网络是按整个特征向量的整体来记忆图像的,只要大多数特征符合曾学习过的样本就可识别为同一类别,所以当样本存在较大噪声时神经网络分类器仍可正确识别。

在图像识别阶段,只要将图像的点阵向量作为神经网络分类器的输入,经过网络的计算,分类器的输出就是识别结果。五、仿真实验1、实验对象本实验用MATLAB完成了对神经网络的训练和图像识别模拟。

从实验数据库中选择0~9这十个数字的BMP格式的目标图像。图像大小为16×8像素,每个目标图像分别加10%、20%、30%、40%、50%大小的随机噪声,共产生60个图像样本。

将样本分为两个部分,一部分用于训练,另一部分用于测试。实验中用于训练的样本为40个,用于测试的样本为20个。随机噪声调用函数randn(m,n)产生。

2、网络结构本试验采用三层的BP网络,输入层神经元个数等于样本图像的象素个数16×8个。隐含层选24个神经元,这是在试验中试出的较理想的隐层结点数。

输出层神经元个数就是要识别的模式数目,此例中有10个模式,所以输出层神经元选择10个,10个神经元与10个模式一一对应。

3、基于MATLAB语言的网络训练与仿真建立并初始化网络% ================S1 = 24;% 隐层神经元数目S1 选为24[R,Q] = size(numdata);[S2,Q] = size(targets);F = numdata;P=double(F);net = newff(minmax(P),[S1 S2],{'logsig''logsig'},'traingda','learngdm')这里numdata为训练样本矩阵,大小为128×40,targets为对应的目标输出矩阵,大小为10×40。

newff(PR,[S1S2…SN],{TF1TF2…TFN},BTF,BLF,PF)为MATLAB函数库中建立一个N层前向BP网络的函数,函数的自变量PR表示网络输入矢量取值范围的矩阵[Pminmax];S1~SN为各层神经元的个数;TF1~TFN用于指定各层神经元的传递函数;BTF用于指定网络的训练函数;BLF用于指定权值和阀值的学习函数;PF用于指定网络的性能函数,缺省值为‘mse’。

设置训练参数net.performFcn = 'sse'; %平方和误差性能函数 = 0.1; %平方和误差目标 = 20; %进程显示频率net.trainParam.epochs = 5000;%最大训练步数 = 0.95; %动量常数网络训练net=init(net);%初始化网络[net,tr] = train(net,P,T);%网络训练对训练好的网络进行仿真D=sim(net,P);A = sim(net,B);B为测试样本向量集,128×20的点阵。

D为网络对训练样本的识别结果,A为测试样本的网络识别结果。实验结果表明:网络对训练样本和对测试样本的识别率均为100%。如图为64579五个数字添加50%随机噪声后网络的识别结果。

六、总结从上述的试验中已经可以看出,采用神经网络识别是切实可行的,给出的例子只是简单的数字识别实验,要想在网络模式下识别复杂的目标图像则需要降低网络规模,增加识别能力,原理是一样的。

谷歌人工智能写作项目:神经网络伪原创

怎么进行人民币冠字码识别

人民币纸币上除了汉字、少数民族文字、汉语拼音及第四套人民币主币上增加的盲文外,还有用以控制各种票券印制数量和防伪作用的冠号和号码AI发猫

冠,取首之意,冠字也称“字头”,即印在票券号码前的符号,用以表示各种票券和印制数量的批号。

中国人民银行发行的五套人民币纸币,前三套均使用两个或三个不同的罗马数字(Ⅰ、Ⅱ、Ⅲ、Ⅳ等)作冠字,第四套人民币改成两个相同或不同的汉语拼音字母作冠字,而“庆祝中华人民共和国成立50周年”流通纪念钞只用一个汉语拼音字母作冠字。

号码也是表示票券印制数量的编号,是每一冠字批号中的具体编号,一般采用阿拉伯数字排列号码,一票一号,在同一冠字批号中的号码一般不会出现重复。

从钞票的号码位数可以看出该组冠字所印票券的多寡,即位数越多,印制数量越大,反之印制数量越少。

扩展资料:冠字号码新排列方式2010年年初,央行调整了人民币纸币的冠字号码排列方式,如市场所见“A0A0000001”方式。

随着现金发行量的增加,人民币纸币冠字号码排列方式仍会不断调整变化(如“A00A000001”和“A000A00001”等排列方式。

市面上较为广泛使用的第五套人民币100元纸币的冠字号码为十位,前两位是大写的拼音字母组合,后八位则为阿拉伯数字,其中冠字号码前四位为红色,后六位为黑色。

央行有关人士证实,如今两个拼音字母相互排列的冠号组合已经全部使用完,因此有一部分人民币百元钞冠号部分变更为拼音字母数字拼音字母的形式,就如市面上已经出现的“A0A0000001”。

而且,今后随着现金发行量的增加,冠字号码的排列方式还将进行调整。参考资料来源:百度百科—纸币冠号。

ocr文字识别系统

OCR软件OCR(OpticalCharacterRecognition)软件是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程;即,对文本资料进行扫描,然后对图像文件进行分析处理,获取文字及版面信息的过程。

如何除错或利用辅助信息提高识别正确率,是OCR最重要的课题,ICR(IntelligentCharacterRecognition)的名词也因此而产生。

衡量一个OCR系统性能好坏的主要指标有:拒识率、误识率、识别速度、用户界面的友好性,产品的稳定性,易用性及可行性等。

光学文字识别的概念是在1929年由德国科学家Tausheck最先提出来的,后来美国科学家Handel也提出了利用技术对文字进行识别的想法。

而最早对印刷体汉字识别进行研究的是IBM公司的Casey和Nagy,1966年他们发表了第一篇关于汉字识别的文章,采用了模板匹配法识别了1000个印刷体汉字。

早在60、70年代,世界各国就开始有OCR的研究,而研究的初期,多以文字的识别方法研究为主,且识别的文字仅为0至9的数字。

以同样拥有方块文字的日本为例,1960年左右开始研究OCR的基本识别理论,初期以数字为对象,直至1965至1970年之间开始有一些简单的产品,如印刷文字的邮政编码识别系统,识别邮件上的邮政编码,帮助邮局作区域分信的作业;也因此至今邮政编码一直是各国所倡导的地址书写方式。

20世纪70年代初,日本的学者开始研究汉字识别,并做了大量的工作。

中国在OCR技术方面的研究工作起步较晚,在70年代才开始对数字、英文字母及符号的识别进行研究,70年代末开始进行汉字识别的研究,到1986年汉字识别的研究进入一个实质性的阶段,不少研究单位相继推出了中文OCR产品.早期的OCR软件,由于识别率及产品化等多方面的因素,未能达到实际要求。

同时,由于硬件设备成本高,运行速度慢,也没有达到实用的程度。只有个别部门,如信息部门、新闻出版单位等使用OCR软件。

1986年以后我国的OCR研究有了很大进展,在汉字建模和识别方法上都有所创新,在系统研制和开发应用中都取得了丰硕的成果,不少单位相继推出了中文OCR产品。

进入20世纪90年代以后,随着平台式扫描仪的广泛应用,以及我国信息自动化和办公自动化的普及,大大推动了OCR技术的进一步发展,使OCR的识别正确率、识别速度满足了广大用户的要求。

[1]编辑本段软件结构由于扫描仪的普及与广泛应用,OCR软件只需提供与扫描仪的接口,利用扫描仪驱动软件即可。因此,OCR软件主要是由下面几个部分组成。

图像输入、预处理:图像输入:对于不同的图像格式,有着不同的存储格式,不同的压缩方式,目前有OpenCV,CxImage等开源项目。

预处理:主要包括二值化,噪声去除,倾斜较正等二值化:对摄像头拍摄的图片,大多数是彩色图像,彩色图像所含信息量巨大,对于图片的内容,我们可以简单的分为前景与背景,为了让计算机更快的,更好的识别文字,我们需要先对彩色图进行处理,使图片只前景信息与背景信息,可以简单的定义前景信息为黑色,背景信息为白色,这就是二值化图了。

噪声去除:对于不同的文档,我们对燥声的定义可以不同,根据燥声的特征进行去燥,就叫做噪声去除倾斜较正:由于一般用户,在拍照文档时,都比较随意,因此拍照出来的图片不可避免的产生倾斜,这就需要文字识别软件进行较正。

版面分析:将文档图片分段落,分行的过程就叫做版面分析,由于实际文档的多样性,复杂性,因此,目前还没有一个固定的,最优的切割模型。

字符切割:由于拍照条件的限制,经常造成字符粘连,断笔,因此极大限制了识别系统的性能,这就需要文字识别软件有字符切割功能。

字符识别:这一研究,已经是很早的事情了,比较早有模板匹配,后来以特征提取为主,由于文字的位移,笔画的粗细,断笔,粘连,旋转等因素的影响,极大影响特征的提取的难度。

版面恢复:人们希望识别后的文字,仍然像原文档图片那样排列着,段落不变,位置不变,顺序不变,的输出到word文档,pdf文档等,这一过程就叫做版面恢复。

后处理、校对:根据特定的语言上下文的关系,对识别结果进行较正,就是后处理。

编辑本段工作流程一个OCR识别系统,其目的很简单,只是要把影像作一个转换,使影像内的图形继续保存、有表格则表格内资料及影像内的文字,一律变成计算机文字,使能达到影像资料的储存量减少、识别出的文字可再使用及分析,当然也可节省因键盘输入的人力与时间。

从影像到结果输出,须经过影像输入、影像前处理、文字特征抽取、比对识别、最后经人工校正将认错的文字更正,将结果输出。

影像输入欲经过OCR处理的标的物须透过光学仪器,如影像扫描仪、传真机或任何摄影器材,将影像转入计算机。

科技的进步,扫描仪等的输入装置已制作的愈来愈精致,轻薄短小、品质也高,对OCR有相当大的帮助,扫描仪的分辨率使影像更清晰、扫除速度更增进OCR处理的效率。

影像前处理:影像前处理是OCR系统中,须解决问题最多的一个模块,从得到一个不是黑就是白的二值化影像,或灰阶、彩色的影像,到独立出一个个的文字影像的过程,都属于影像前处理。

包含了影像正规化、去除噪声、影像矫正等的影像处理,及图文分析、文字行与字分离的文件前处理。

在影像处理方面,在学理及技术方面都已达成熟阶段,因此在市面上或网站上有不少可用的链接库;在文件前处理方面,则凭各家本领了;影像须先将图片、表格及文字区域分离出来,甚至可将文章的编排方向、文章的提纲及内容主体区分开,而文字的大小及文字的字体亦可如原始文件一样的判断出来。

文字特征抽取:单以识别率而言,特征抽取可说是OCR的核心,用什么特征、怎么抽取,直接影响识别的好坏,也所以在OCR研究初期,特征抽取的研究报告特别的多。

而特征可说是识别的筹码,简易的区分可分为两类:一为统计的特征,如文字区域内的黑/白点数比,当文字区分成好几个区域时,这一个个区域黑/白点数比之联合,就成了空间的一个数值向量,在比对时,基本的数学理论就足以应付了。

而另一类特征为结构的特征,如文字影像细线化后,取得字的笔划端点、交叉点之数量及位置,或以笔划段为特征,配合特殊的比对方法,进行比对,市面上的线上手写输入软件的识别方法多以此种结构的方法为主。

对比数据库:当输入文字算完特征后,不管是用统计或结构的特征,都须有一比对数据库或特征数据库来进行比对,数据库的内容应包含所有欲识别的字集文字,根据与输入文字一样的特征抽取方法所得的特征群组。

对比识别这是可充分发挥数学运算理论的一个模块,根据不同的特征特性,选用不同的数学距离函数,较有名的比对方法有,欧式空间的比对方法、松弛比对法(Relaxation)、动态程序比对法(DynamicProgramming,DP),以及类神经网络的数据库建立及比对、HMM(HiddenMarkovModel)…等著名的方法,为了使识别的结果更稳定,也有所谓的专家系统(ExpertsSystem)被提出,利用各种特征比对方法的相异互补性,使识别出的结果,其信心度特别的高。

字词后处理:由于OCR的识别率并无法达到百分之百,或想加强比对的正确性及信心值,一些除错或甚至帮忙更正的功能,也成为OCR系统中必要的一个模块。

字词后处理就是一例,利用比对后的识别文字与其可能的相似候选字群中,根据前后的识别文字找出最合乎逻辑的词,做更正的功能。 字词数据库:为字词后处理所建立的词库。

人工校正OCR最后的关卡,在此之前,使用者可能只是拿支鼠标,跟着软件设计的节奏操作或仅是观看,而在此有可能须特别花使用者的精神及时间,去更正甚至找寻可能是OCR出错的地方。

一个好的OCR软件,除了有一个稳定的影像处理及识别核心,以降低错误率外,人工校正的操作流程及其功能,亦影响OCR的处理效率,因此,文字影像与识别文字的对照,及其屏幕信息摆放的位置、还有每一识别文字的候选字功能、拒认字的功能、及字词后处理后特意标示出可能有问题的字词,都是为使用者设计尽量少使用键盘的一种功能,当然,不是说系统没显示出的文字就一定正确,就像完全由键盘输入的工作人员也会有出错的时候,这时要重新校正一次或能允许些许的错,就完全看使用单位的需求了。

结果输出有人只要文本文件作部份文字的再使用之用,所以只要一般的文字文件、有人要漂漂亮亮的和输入文件一模一样,所以有原文重现的功能、有人注重表格内的文字,所以要和Excel等软件结合。

无论怎么变化,都只是输出档案格式的变化而已。如果需要还原成原文一样格式,则在识别后,需要人工排版,耗时耗力。编辑本段中文识别资料录入文献资料的数字化录入,一般分为: 1.纯图像方式。

2.目录文本、正文图像方式。 3.全文本方式。 4.全文索引方式。文本方式和图像方式的混合体。

识别过程书本级:中文,英文;简体,繁体; 版式级:竖排,横排;有无分栏; 行切分 字切分 识别:真正的OCR识别过程,图像信息还原成文本信息 后处理:人工干预,主要集中在前四个阶段。

识别结果决定因素1.图片的质量,一般建议150dpi以上 2.颜色,一般对彩色识别很差,黑白的图片较高,因此建议ocr的为黑白tif格式 3.最重要的就是字体,如果是手写识别率很低。

国内OCR识别简体差错率为万分之三,如果要求更高的精度需要投入更大的人工干预。

繁体识别由于繁体字库的不统一性(民国时期的字库和现在繁体字库不统一),导致识别困难,在人工干预下,精度能达到90%以上(图文清晰情况下)。编辑本段识别技巧1.分辨率的设置是文字识别的重要前提。

一般来讲,扫描仪提供较多的图像信息,识别软件比较容易得出识别结果。但也不是扫描分辨率设得越高识别正确率就越高。选择300dpi或400dpi分辨率,适合大部分文档扫描。

注意文字原稿的扫描识别,设置扫描分辨率时千万不要超过扫描仪的光学分辨率,不然会得不偿失。下面是部分典型设置,仅供参考。 (1)1、2、3号字的文章段,推荐使用200dpi。

(2)4、小4、5号字的文章段,推荐使用300dpl (3)小5、6号字的文章段,推荐使用400dpl (4)7、8号字的文章段,推荐使用600dpi。

2.扫描时适当地调整好亮度和对比度值,使扫描文件黑白分明。这对识别率的影响最为关键,扫描亮度和对比度值的设定以观察扫描后的图像中汉字的笔画较细但又不断开为原则。

进行识别前,先看看扫描得到的图像中文字质量如何,如果图像存在黑点或黑斑时或文字线条很粗很黑,分不清笔画时,说明亮度值太小了,应该增加亮度值在试试;如果文字线条凹凸不平,有断线甚至图像中汉字轮廓严重残缺时,说明亮度值太大了,应减小亮度后再试试。

3.选好扫描软件。选一款好的适合自己的OCR软件是作好文字识别工作的基础,一般不要使用扫描仪自带的OEM软件,OEM的OCR软件的功能少、效果差,有的甚至没有中文识别。

再选一个图像软件,第一,OCR软件不能识别所有的扫描仪;第二,也是最关键的,利用图像软件的扫描接口扫描出来的图像便于处理。

4.如果要进行的文本是带有格式的,如粗体、斜体、首行缩进等,部分OCR软件识别不出来,会丢失格式或出现乱码。如果必须扫描带有格式的文本,事先要确保使用的识别软件是否支持文字格式的扫描。

也可以关闭样式识别系统,使软件集中注意力查找正确的字符,不再顾及字体和字体格式。 5.在扫描识别报纸或其他半透明文稿时,背面的文字透过纸张混淆文字字形,对识别会造成很大的障碍。

遇到该类扫描,只要在扫描原稿的背面附。

盖一张黑纸,扫描时,增加扫描对比度,即可减少背面模糊字体的影响,提高识别正确率, 6.一般文本扫描原稿都为黑、白两色原稿,但是在扫描设置时却常将扫描模式设为灰度模式。

特别是在原稿质量较差时,使用灰度模式扫描,并在扫描软件处理完后再继续识别,这样会得到较好的识别正确率。值得注意的是OCR识别软件可以自己确定阀值,几个百分点的阀值差异,可能就会影响识别的正常进行。

当然,得到的图像文件的大小会比黑白文件大很多。在进行大批量文稿扫描时,必须对原稿进行测试,找到最佳的阀值百分比。 7.遇到图文混排的扫描原稿,首先明确使用的识别软件是否支持自动分析图文这一功能。

如果支持的话,在进行这类扫描识别时,OCR软件会自动计算出文本的内容、位置和先后顺序。文字部分可以按照标示顺序正常识别。 8.手动选取扫描区域会有更好识别效果。

设置好参数后,先预览一下,然后开始选取扫描区域。不要将要用的文章一股脑儿选在一个区域内,因为现在的文章排版为了追求更好的视觉效果,使用图文混排的较多,扫成一幅图像会影响OCR识别。

因此,要根据实际情况将版面分成N个区域,怎么划分区域呢?每一区域内的文字字体、字号最好一致,没有图形、图像,每一行的宽度一致,遇到长短不一,再细分,一般一次最多可扫描10个选区。

根据不同情况,合理地设置识别区域的顺序。不要嫌这个过程太烦,那可是提高识别率的有效手段。注意各识别区域不能有交叉,做到一切觉得完好以后再进行识别。

这样一般的识别率会在95%以上,对于识别不正确的文字进行校对后,就可以进入相应的文字处理软件进行所需的处理了。

9.在放置扫描原稿时,把扫描的文字材料一定要摆放在扫描起始线正中,以最大限度地减小由于光学透镜导致的失真。同时应保护扫描仪玻璃的干净和不受损害。

文字有一定角度的倾斜,或者是原稿文字部分为不正规排版,必须在扫描后使用旋转工具,进行纠正;否则OCR识别软件会将水平笔划当做斜笔划处理,识别正确率会下降很多。

建议用户尽量将扫描原稿放正,用工具旋转纠正会降低图像质量,使字符识别更加困难。

10.先"预览"整体版面,选定要扫描的区域,再用"放大预览"工具,选择一小块进行放大显示到全屏幕,观察其文字的对比度,文字的深浅浓度,据情况调整"阀值"的大小,最终要求文字清晰,不浓(文字成团),不淡(文字断笔伐),一般在"阀值"80左右为宜,最后再扫描。

11.用工具擦掉图像污点,包括原来版面中的不需要识别的插图、分隔线等,使文字图像中除了文字没有一点多余的东西;这可以大提高识别率并减少识别后的修改工作。

12.如果要扫描印刷质量稍微差一些的文章,比如说报纸,扫描的结果将不会黑白分明,会出现大量的黑点,而且在字体的笔画上也会出现粘连现象,这两项可是汉字识别的大忌,将严重影响汉字识别的正确率。

为获得较好的识别结果,必须仔细进行色调调节,反复扫描多次才能获得比较理想的结果。

另外由于报纸很薄且大部分纸质不高,导致扫描仪上盖板不能完全压住报纸(有缝隙),所以一般情况下报纸的扫描识别效果没有杂志的效果好。解决办法是在报纸上压一至两本16K的杂志,效果还是不错的。

目前国内最有实力的OCR公司有:云脉(),汉王(),文通()云脉OCR文字识别软件支持20多种语言。有免费试用版。

什么是OCR技术?(专业术语解释)

要谈OCR的发展,早在60、70年代,世界各国就开始有OCR的研究,而研究的初期,多以文字的识别方法研究为主,且识别的文字仅为0至9的数字。

以同样拥有方块文字的日本为例,1960年左右开始研究OCR的基本识别理论,初期以数字为对象,直至1965至1970年之间开始有一些简单的产品,如印刷文字的邮政编码识别系统,识别邮件上的邮政编码,帮助邮局作区域分信的作业;也因此至今邮政编码一直是各国所倡导的地址书写方式。

OCR可以说是一种不确定的技术研究,正确率就像是一个无穷趋近函数,知道其趋近值,却只能靠近而无法达到,永远在与100%作拉锯战。

因为其牵扯的因素太多了,书写者的习惯或文件印刷品质、扫描仪的扫瞄品质、识别的方法、学习及测试的样本……等等,多少都会影响其正确率,也因此,OCR的产品除了需有一个强有力的识别核心外,产品的操作使用方便性、所提供的除错功能及方法,亦是决定产品好坏的重要因素。

一个OCR识别系统,其目的很简单,只是要把影像作一个转换,使影像内的图形继续保存、有表格则表格内资料及影像内的文字,一律变成计算机文字,使能达到影像资料的储存量减少、识别出的文字可再使用及分析,当然也可节省因键盘输入的人力与时间。

从影像到结果输出,须经过影像输入、影像前处理、文字特征抽取、比对识别、最后经人工校正将认错的文字更正,将结果输出。

在此逐一介绍:影象输入:欲经过OCR处理的标的物须透过光学仪器,如影像扫描仪、传真机或任何摄影器材,将影像转入计算机。

科技的进步,扫描仪等的输入装置已制作的愈来愈精致,轻薄短小、品质也高,对OCR有相当大的帮助,扫描仪的分辨率使影像更清晰、扫除速度更增进OCR处理的效率。

影象前处理:影像前处理是OCR系统中,须解决问题最多的一个模块,从得到一个不是黑就是白的二值化影像,或灰阶、彩色的影像,到独立出一个个的文字影像的过程,都属于影像前处理。

包含了影像正规化、去除噪声、影像矫正等的影像处理,及图文分析、文字行与字分离的文件前处理。

在影像处理方面,在学理及技术方面都已达成熟阶段,因此在市面上或网站上有不少可用的链接库;在文件前处理方面,则凭各家本领了;影像须先将图片、表格及文字区域分离出来,甚至可将文章的编排方向、文章的题纲及内容主体区分开,而文字的大小及文字的字体亦可如原始文件一样的判断出来。

文字特征抽取:单以识别率而言,特征抽取可说是OCR的核心,用什么特征、怎么抽取,直接影响识别的好坏,也所以在OCR研究初期,特征抽取的研究报告特别的多。

而特征可说是识别的筹码,简易的区分可分为两类:一为统计的特征,如文字区域内的黑/白点数比,当文字区分成好几个区域时,这一个个区域黑/白点数比之联合,就成了空间的一个数值向量,在比对时,基本的数学理论就足以应付了。

而另一类特征为结构的特征,如文字影像细线化后,取得字的笔划端点、交叉点之数量及位置,或以笔划段为特征,配合特殊的比对方法,进行比对,市面上的线上手写输入软件的识别方法多以此种结构的方法为主。

对比数据库:当输入文字算完特征后,不管是用统计或结构的特征,都须有一比对数据库或特征数据库来进行比对,数据库的内容应包含所有欲识别的字集文字,根据与输入文字一样的特征抽取方法所得的特征群组。

对比识别:这是可充分发挥数学运算理论的一个模块,根据不同的特征特性,选用不同的数学距离函数,较有名的比对方法有,欧式空间的比对方法、松弛比对法(Relaxation)、动态程序比对法(DynamicProgramming,DP),以及类神经网络的数据库建立及比对、HMM(HiddenMarkovModel)…等著名的方法,为了使识别的结果更稳定,也有所谓的专家系统(ExpertsSystem)被提出,利用各种特征比对方法的相异互补性,使识别出的结果,其信心度特别的高。

字词后处理:由于OCR的识别率并无法达到百分之百,或想加强比对的正确性及信心值,一些除错或甚至帮忙更正的功能,也成为OCR系统中必要的一个模块。

字词后处理就是一例,利用比对后的识别文字与其可能的相似候选字群中,根据前后的识别文字找出最合乎逻辑的词,做更正的功能。字词数据库:为字词后处理所建立的词库。

人工校正:OCR最后的关卡,在此之前,使用者可能只是拿支鼠标,跟着软件设计的节奏操作或仅是观看,而在此有可能须特别花使用者的精神及时间,去更正甚至找寻可能是OCR出错的地方。

一个好的OCR软件,除了有一个稳定的影像处理及识别核心,以降低错误率外,人工校正的操作流程及其功能,亦影响OCR的处理效率,因此,文字影像与识别文字的对照,及其屏幕信息摆放的位置、还有每一识别文字的候选字功能、拒认字的功能、及字词后处理后特意标示出可能有问题的字词,都是为使用者设计尽量少使用键盘的一种功能,当然,不是说系统没显示出的文字就一定正确,就像完全由键盘输入的工作人员也会有出错的时候,这时要重新校正一次或能允许些许的错,就完全看使用单位的需求了。

结果输出:其实输出是件简单的事,但却须看使用者用OCR到底为了什么?

有人只要文本文件作部份文字的再使用之用,所以只要一般的文字文件、有人要漂漂亮亮的和输入文件一模一样,所以有原文重现的功能、有人注重表格内的文字,所以要和Excel等软件结合。

无论怎么变化,都只是输出档案格式的变化而已。

什么是ocr

什么是OCROCR(OpticalCharacterRecognition,光学字符识别),是属于图型识别(PatternRecognition,PR)的一门学问。

其目的就是要让计算机知道它到底看到了什么,尤其是文字资料。

由于OCR是一门与识别率拔河的技术,因此如何除错或利用辅助信息提高识别正确率,是OCR最重要的课题,ICR(IntelligentCharacterRecognition)的名词也因此而产生。

而根据文字资料存在的媒体介质不同,及取得这些资料的方式不同,就衍生出各式各样、各种不同的应用。在此对OCR作一基本介绍,包括其技术简介以及其应用介绍。

一、OCR的发展要谈OCR的发展,早在60、70年代,世界各国就开始有OCR的研究,而研究的初期,多以文字的识别方法研究为主,且识别的文字仅为0至9的数字。

以同样拥有方块文字的日本为例,1960年左右开始研究OCR的基本识别理论,初期以数字为对象,直至1965至1970年之间开始有一些简单的产品,如印刷文字的邮政编码识别系统,识别邮件上的邮政编码,帮助邮局作区域分信的作业;也因此至今邮政编码一直是各国所倡导的地址书写方式。

OCR可以说是一种不确定的技术研究,正确率就像是一个无穷趋近函数,知道其趋近值,却只能靠近而无法达到,永远在与100%作拉锯战。

因为其牵扯的因素太多了,书写者的习惯或文件印刷品质、扫描仪的扫瞄品质、识别的方法、学习及测试的样本……等等,多少都会影响其正确率,也因此,OCR的产品除了需有一个强有力的识别核心外,产品的操作使用方便性、所提供的除错功能及方法,亦是决定产品好坏的重要因素。

一个OCR识别系统,其目的很简单,只是要把影像作一个转换,使影像内的图形继续保存、有表格则表格内资料及影像内的文字,一律变成计算机文字,使能达到影像资料的储存量减少、识别出的文字可再使用及分析,当然也可节省因键盘输入的人力与时间。

其处理流程如下图:(在下面的站点上)从影像到结果输出,须经过影像输入、影像前处理、文字特征抽取、比对识别、最后经人工校正将认错的文字更正,将结果输出。

在此逐一介绍:影象输入:欲经过OCR处理的标的物须透过光学仪器,如影像扫描仪、传真机或任何摄影器材,将影像转入计算机。

科技的进步,扫描仪等的输入装置已制作的愈来愈精致,轻薄短小、品质也高,对OCR有相当大的帮助,扫描仪的分辨率使影像更清晰、扫除速度更增进OCR处理的效率。

影象前处理:影像前处理是OCR系统中,须解决问题最多的一个模块,从得到一个不是黑就是白的二值化影像,或灰阶、彩色的影像,到独立出一个个的文字影像的过程,都属于影像前处理。

包含了影像正规化、去除噪声、影像矫正等的影像处理,及图文分析、文字行与字分离的文件前处理。

在影像处理方面,在学理及技术方面都已达成熟阶段,因此在市面上或网站上有不少可用的链接库;在文件前处理方面,则凭各家本领了;影像须先将图片、表格及文字区域分离出来,甚至可将文章的编排方向、文章的题纲及内容主体区分开,而文字的大小及文字的字体亦可如原始文件一样的判断出来。

文字特征抽取:单以识别率而言,特征抽取可说是OCR的核心,用什么特征、怎么抽取,直接影响识别的好坏,也所以在OCR研究初期,特征抽取的研究报告特别的多。

而特征可说是识别的筹码,简易的区分可分为两类:一为统计的特征,如文字区域内的黑/白点数比,当文字区分成好几个区域时,这一个个区域黑/白点数比之联合,就成了空间的一个数值向量,在比对时,基本的数学理论就足以应付了。

而另一类特征为结构的特征,如文字影像细线化后,取得字的笔划端点、交叉点之数量及位置,或以笔划段为特征,配合特殊的比对方法,进行比对,市面上的线上手写输入软件的识别方法多以此种结构的方法为主。

对比数据库:当输入文字算完特征后,不管是用统计或结构的特征,都须有一比对数据库或特征数据库来进行比对,数据库的内容应包含所有欲识别的字集文字,根据与输入文字一样的特征抽取方法所得的特征群组。

对比识别:这是可充分发挥数学运算理论的一个模块,根据不同的特征特性,选用不同的数学距离函数,较有名的比对方法有,欧式空间的比对方法、松弛比对法(Relaxation)、动态程序比对法(DynamicProgramming,DP),以及类神经网络的数据库建立及比对、HMM(HiddenMarkovModel)…等著名的方法,为了使识别的结果更稳定,也有所谓的专家系统(ExpertsSystem)被提出,利用各种特征比对方法的相异互补性,使识别出的结果,其信心度特别的高。

字词后处理:由于OCR的识别率并无法达到百分之百,或想加强比对的正确性及信心值,一些除错或甚至帮忙更正的功能,也成为OCR系统中必要的一个模块。

字词后处理就是一例,利用比对后的识别文字与其可能的相似候选字群中,根据前后的识别文字找出最合乎逻辑的词,做更正的功能。字词数据库:为字词后处理所建立的词库。

人工校正:OCR最后的关卡,在此之前,使用者可能只是拿支鼠标,跟着软件设计的节奏操作或仅是观看,而在此有可能须特别花使用者的精神及时间,去更正甚至找寻可能是OCR出错的地方。

一个好的OCR软件,除了有一个稳定的影像处理及识别核心,以降低错误率外,人工校正的操作流程及其功能,亦影响OCR的处理效率,因此,文字影像与识别文字的对照,及其屏幕信息摆放的位置、还有每一识别文字的候选字功能、拒认字的功能、及字词后处理后特意标示出可能有问题的字词,都是为使用者设计尽量少使用键盘的一种功能,当然,不是说系统没显示出的文字就一定正确,就像完全由键盘输入的工作人员也会有出错的时候,这时要重新校正一次或能允许些许的错,就完全看使用单位的需求了。

结果输出:其实输出是件简单的事,但却须看使用者用OCR到底为了什么?

有人只要文本文件作部份文字的再使用之用,所以只要一般的文字文件、有人要漂漂亮亮的和输入文件一模一样,所以有原文重现的功能、有人注重表格内的文字,所以要和Excel等软件结合。

无论怎么变化,都只是输出档案格式的变化而已。

智能语义检索怎么实现?

以图像识别技术、光学字符识别(OCR)技术为基础,利用语义工程技术对文档文件进行解析,在此基础上开发智能化数据应用,把数据库内海量的信息梳理成知识图谱,从而实现智能语义检索。

随着神经网络深度学习技术的突破性发展,OCR技术也得到了突飞猛进的发展。

对图片或PDF形式的电子文档进行OCR,还原其中的文本信息,就能实现基于关键词的全文检索技术,可以不经过繁琐的分类目录系统,直接通过文档文件原文,快速地定位和查询所需内容,实现数据的局部重组和复用。

现在市面上部分基于关键词的全文检索技术可以实现信息数字化,但它们实现不了信息资源的数据化,特别是当知识体系中的关键词不在档案原文中时,文档中即便有相关信息,也检索不到。

计算机是靠“结构”来存储知识的,也只有结构化的数据库才支持处理复杂的业务逻辑。随着人工智能自然语言理解(NLP)技术的不断发展,语义工程技术也得到了很大发展。

语义工程技术能对文档文件进行解析,并将解析结果整合到人们设定的知识结构中,把数字化信息(各部分)按业务逻辑重组为一张张结构化的表格,支持各种计算、统计和分析。

与基于关键词的全文检索相比,智能语义检索系统可以不依赖关键词从文本中提取所需信息,只要相关的语义存在于文本中即可,用户输入的检索请求可以是标签、事件、事理图谱、字段等;与传统的关系数据库相比,语义工程不需要在事先将完整的知识结构都想好,它可以随时设计、补充和完善知识结构。

并且,无论知识结构变动多大,都不需要像一些神经网络解决方案那样重新标注训练素材、重新训练模型,才能适应新的变化。智能语义检索系统只需要完成知识结构的简单配置就可投入使用。

OCR是什么意思?

COR是指光学字符识别。

OCR(OpticalCharacterRecognition,光学字符识别)是指电子设备(例如扫描仪或数码相机)检查纸上打印的字符,通过检测暗、亮的模式确定其形状,然后用字符识别方法将形状翻译成计算机文字的过程。

针对印刷体字符,采用光学的方式将纸质文档中的文字转换成为黑白点阵的图像文件,并通过识别软件将图像中的文字转换成文本格式,供文字处理软件进一步编辑加工的技术。

扩展资料:在日常的工作生活中还有很多把文字识别的需求,图书馆中有大量的珍贵的史料资料、企业发展过程中也有很多珍贵的资料需要留存登记、以及翻译公司也需要文字识别技术。

更重要的是这些资料不仅仅需要保存还需要是必要的时候对资料进行检索,采用ocr文字识别技术实现资料的随时调用和检索,文字识别可以减少对史料的损坏以及增加资料的利用率等。

OCR文字识别支持PDF,BMP,JPG,PNG等多种格式图像的读取,支持多种外语识别,OCR识别可以解决史料保存、图书馆检索、办公室OA等麻烦。参考资料来源:百度百科-OCR。

神经网络的研究方向

神经网络的研究可以分为理论研究和应用研究两大方面。理论研究可分为以下两类:1、利用神经生理与认知科学研究人类思维以及智能机理。

2、利用神经基础理论的研究成果,用数理方法探索功能更加完善、性能更加优越的神经网络模型,深入研究网络算法和性能,如:稳定性、收敛性、容错性、鲁棒性等;开发新的网络数理理论,如:神经网络动力学、非线性神经场等。

应用研究可分为以下两类:1、神经网络的软件模拟和硬件实现的研究。2、神经网络在各个领域中应用的研究。这些领域主要包括:模式识别、信号处理、知识工程、专家系统、优化组合、机器人控制等。

随着神经网络理论本身以及相关理论、相关技术的不断发展,神经网络的应用定将更加深入。

matlab中BP神经网络OCR识别?

单看错误率分析不出来什么,可能是样本量太少,也可能是别的原因。可以把错误识别的样本拿出来,看看是哪些地方导致的错误,再有针对性的改进。

还可能是特征工程不到位,特征选取的不好,不满足尺度不变性、旋转不变性、仿射不变性三个要素,说白了就是,大小变了,旋转的角度变了,拍照的时候站的位置不同导致对车牌的透视发生变化了,然后可能就识别不出来了。

所以可以考虑找一个更好的描述特征的方法,比如HoG(方向梯度直方图)。

HoG,简单说就是,相邻的两个像素值做个减法,就可以表示颜色的变化,那么一个像素周围,上下、左右各有两个像素,就可以分别做两个减法,得到两个值,就像力学里两个力可以合并一样,这两个值也可以合并,得到方向,和大小(就是梯度),这样就有了一个像素的特征。

但是特征太多计算量太大,就用统计的方法减少下特征,首先把图片划分成网格的形式,就像是在图像上画围棋线一样,然后每个方格内单独统计一下,方向在0-20角度内的像素的梯度的和是多少,依次类推,就得到了直方图,如果以20度为一个直方的话,那么180度就可以划分成9个直方,也就是9个特征,这样一个方格内的特征数量就与像素的数量无关了,而是固定了的。

然后就是关于HoG的其他手段了,比如为了消除光照变化,可以对特征向量做归一化等。

另外还可以对HoG可视化,在每个方格内,用线的方向和长度代替特征的方向和梯度,最后呈现的效果是,有若干个方格,每个方格内都好像有一个沿原点对称的星星,这样做对分析算法效果有一定帮助。

HoG是比较常见的特征描述子了,在行人检测上用的比较多。除了HoG,还有SIFT、SURF等特征描述子,这些都是计算机视觉中的内容了,属于特征检测的范畴。

计算机视觉主要包括二值化、滤波器、特征检测、特征匹配等一些基础的手段,然后就是图像滤镜、图像分割、图像识别、图像生成等具体的应用算法。

由于近年来计算成本降低导致神经网络的再度崛起,计算机视觉的研究热点已经转为深度神经网络的各种改进和性能优化上了,像HoG已经是05年的事情了。

关于车牌识别(LPR),如果环境不复杂,是可以做到接近100%的准确率的,如果环境较为复杂,95%以上准确率应该是可以做到的。总的来说,基本已经实现应用落地和商用了。

现在的方法基本都是深度学习,端到端一气呵成,无需专门提取特征,传统的模式识别方法已经GG。说的比较细。

如果只是关心结果的话,Github上可以找到关于车牌识别的一些开源项目,比如openalpr之类的,当然也是采用深度学习的办法,炼丹嘛,就是这么直接。

 

你可能感兴趣的:(神经网络,神经网络,深度学习,人工智能)