图像压缩原理-JPEG

搬来一个基础啊 给自己看~~ 非技术指正勿扰 

图像的格式有很多种,比如PNG,JPEG等等,但当我们把一张图用工具变成各种其他格式时,其在计算机文件系统显示的文件大小各不一样,但是当你打开显示时,从视觉角度上看,几乎看不出差距。这其中涉及到的领域被称为图像压缩技术。常用的技术包括:颜色空间转换(RGB→YCrCb)和DCT 2D变换。

从事各行各业的大佬们,我相信,你们对图像格式是不陌生的,有很多种图像格式,比如,png,jpeg等等,但是你发现,同一张图片,当我们把他用工具变成各种其他格式时,其在计算机文件系统显示的文件大小各不一样,但是当你打开显示时,从视觉角度上看,几乎看不出差距。那为什么现实的文件大小不一样,但是带给我们的视觉感受确实几乎一样的呢,这里面就涉及到一个领域:数据压缩,具体到图像这块称之为图像压缩技术。今天,我就来给大家简单讲讲我们常用的JPEG压缩原理技术。

我们知道,常见的图像是由RGB格式组成,图像上的每个像素值分别由R(8bit)G(8bit)B(8bit)表示,如下图所示:

图像压缩原理-JPEG_第1张图片

下面展示的是一张2592x1944(所谓的2K分辨率)图像,在没有经过任何压缩和利用JPEG技术后的文件大小:

图像压缩原理-JPEG_第2张图片

压缩前大约15M,压缩后大约只有0.8M。

压缩技术一:颜色空间转换  

研究人员通过大量实验证明,人类视觉系统对亮度的更敏感,而对颜色没那么敏感,如下图所示,A和B其实是一种颜色。

图像压缩原理-JPEG_第3张图片

因此,我们可以将图像从RGB→YCrCb空间(Y:亮度,Cb:蓝色色度,Cr:红色色度),缩减Cr和Cb分量的采样数,而对于亮度Y,则保留0~255等级,这个技术就叫做色度下采样,更常见的称呼是色度抽样。

图像压缩原理-JPEG_第4张图片 

未对Cr和Cb进行下采样

图像压缩原理-JPEG_第5张图片 

对Cr和Cb进行下采样

我们来具体看看一个例子,下图是一副8x8的图,将其YCrCb单独分离出来:

图像压缩原理-JPEG_第6张图片 

YCrCb空间

然后我们分别对Cr和Cb进行下采样操作(2X2窗口滑动,取左上角元素):

图像压缩原理-JPEG_第7张图片

对Cr进行下采样,Cb也进行同样的操作

最终得到如下:

图像压缩原理-JPEG_第8张图片

下采样的YCrCb空间

然后合并得到: 图像压缩原理-JPEG_第9张图片

 未进行下采样和进行下采样的图

上述过程进行对图像进行色彩下采样操作,再来看看对于2k的图,进行色彩下采样操作后的前后对比:

图像压缩原理-JPEG_第10张图片

原图像(未经压缩)和被压缩后的图像

通过上述操作,我们可以看出,相对于原图,我们压缩了50%的存储空间:

图像压缩原理-JPEG_第11张图片

图像数据在压缩了接近50%之后,对于人类视觉系统而言,也几乎没有什么差距,但是JPEG压缩技术可以做到接近95%的压缩,那还能从哪些地方进行数据压缩呢?

压缩技术二:DCT 2D变换  

从信号处理角度看,数字图像其本身就是一种信号,那可不可以从这个角度剖析图像自身蕴含的信号,进一步抽取我们尽可能需要保留的信息,而去除一些无关紧要的其他信息呢?答案是肯定的。首先我们抽取图像的一行,

图像压缩原理-JPEG_第12张图片

 图像的一行所蕴含的信号图像

通过大量的视觉实验,我们知道,人类视觉对高频信息并不那么敏感:

图像压缩原理-JPEG_第13张图片

人类视觉对高频信息并不敏感

可以利用信号处理领域的相关手段,分析出图像中高低频信息含量,并通过一定手段筛选出我们需要的信息。此时,一个重要的方法排上了用场,DCT(离散余弦变换),在冈萨雷斯的《数字图像处理》书中,有详细的推理,这里简述一下精髓:一切信号都可以用若干不同频率的标准余弦信号通过特定的组合形式表示出来。考虑下面一个只有8个像素的单行图像:

图像压缩原理-JPEG_第14张图片

cos(x)

从上面可以看出,对于y0~y7,这8个离散值从标准的cos(x)函数上采样获取。也就是说,对于y来说,其可以只用一个cos(x)就能完全表达,因此,通过DCT变换后,在幅频图上,对于cos(x)的那个系数X1=1,而其他X0, X2, ....., X7则为0(X0~X7分别代表从低频信号(比如cos(x))到高频信号(比如cos(7x))的系数),同理有,当y0~y7服从cos(2x)时,其经过DCT变换后,其X2=1,下图是将y值在0~255范围空间进行转换到-128~128空间。 图像压缩原理-JPEG_第15张图片

cos(2x)

类似的有,对于y0~y7从cos(3x)进行下采样操作,对应的DCT变换后的的幅频图。

图像压缩原理-JPEG_第16张图片

cos(3x)

因此,经过上述分析,就有:cos(kx) 与Xk一一对应的关系:

图像压缩原理-JPEG_第17张图片

cos(kx)

枚举所有情况,如下所示:

图像压缩原理-JPEG_第18张图片

因此,我们也可以得到:8个像素值的所有组合,均可以表示为该8个余弦函数的总和。这里我们分析一下,对于任意的8个像素值组合,其对应的下面的DCT变换如下,其Xk求解形式如下: 

图像压缩原理-JPEG_第19张图片将其写成向量形式有: 

图像压缩原理-JPEG_第20张图片

更进一步有:

图像压缩原理-JPEG_第21张图片 

需要注意的是,DCT变化是可逆的,对应如下图所示:

图像压缩原理-JPEG_第22张图片 

我们将Inrerse DCT拆开写,更清楚的显示任意信号和对应的标准余弦信号组合关系: 

图像压缩原理-JPEG_第23张图片

接下来,我们从图像中,任意扣取一个8x8的区域进行分析,此时,一维的DCT变换也随之拓展到二维:

图像压缩原理-JPEG_第24张图片 

DCT 2D变换

由于DCT具有可逆性,也就是说,根据DCT 2D得到的变换矩阵,我们可以完整反推出对应的像素值,我们可以把64个系数从低频到高频依次加入,其图像的变换情况:

图像压缩原理-JPEG_第25张图片

从上述变换可以看出,后面添加的一些高频信息,对图像的整体改变并没有变多少,这是发生一些非常细微上的表现,然而,我们人类视觉系统对这些改变并不敏感。

在 JPEG 算法中,图像被分为了 8*8 的像素组,每个像素组用自己的离散余弦变化进行频域编码。为什么选用 8*8 的像素组。采用比 8*8 更大的像素组,会大幅增加 DCT 的运算量,且编码质量也不会明显提升;采用比 8*8 更小的像素组会导致分组增多降低精度。所以8*8 的像素组是效率最优的结果。对每个像素组组,我们都用上述DCT进行变换。

下面演示不断添加频率个数,图像恢复情况:

图像压缩原理-JPEG_第26张图片
当系数为0时,恢复出来一片白板;只用一个系数时,图像大体轮廓已出现;加入8个频率时,图像基本上恢复出原样;加入16个频率时,图像越来越清楚。随着后续高频不断加入,图像并没有多大改变,此时,我们就可以丢弃DCT的高频分量了。

具体怎么丢弃呢?研究人员通过大量的视觉实验,最终定义出一个量化表格(Quantization Table),如下所示:

图像压缩原理-JPEG_第27张图片

Quantization Table

将DCT 2D变换得到表格(上面Encoding中左边)与量化表格进行逐元素触发,得到右边蓝色表格,可以发现,变成一个稀疏矩阵,同时,也注意到一个事情,如下图所示,DCT 2D得到的系数矩阵,其左上角最大,低频信息集中在左上角区域,而高频部分则集中在右下角部分(低频信息,对应的DCT系数矩阵其能量系数也大)。这个性质其实可以从DCT 2D的推理过程可以得到。在上述经过量化后的系数矩阵中,右下部分出现大量的0,也就意味着,该信号可以被舍弃。注意,舍弃高频信息的过程就是量化过程,这里会出现信息损失。

图像压缩原理-JPEG_第28张图片
JPEG压缩技术规定了不同quality factor下的量化值,QF越大,量化表格里的数值就越小,其损失也就越小,同时,结合人眼对色彩的敏感要低于亮度,因此,对于Y和CrCb,定义了不同的量化系数。

图像压缩原理-JPEG_第29张图片

为了进一步对数据进行压缩,我们对经过量化后的稀疏矩阵进一步分析,采用游程编码(ZigZag)和霍夫曼编码组合手段,进一步减少信息存储,如下图所示:

图像压缩原理-JPEG_第30张图片

ZigZag游程编码+Huffman编码

最后,对压缩信息进行huffman编码处理,如下图所示:

ZigZag游程编码+Huffman编码

上述整个过程中,就是JPEG图像压缩原理,整个过程清晰明朗,一气呵成,希望能帮助到各位。    whaosoft aiot http://143ai.com

总结  

JPEG图像压缩技术原理其核心技术包括以下两个方面:

RGB to YCrCb:利用人类视觉系统对色彩的不敏感特性,对Cr和Cb下采样;

 DCT 2D变换:利用人类视觉系统对高频的不敏感特性,舍弃部分高频信息,采用游程编码和Huffman编码技术,进一步减少数据冗余。

你可能感兴趣的:(音视频,音视频)