在日常工作中,我们常常会用到需要周期性执行的任务,一种方式是采用 Linux 系统自带的 crond 结合命令行实现,另外一种方式是直接使用Python。
最近我整理了一下 Python 定时任务的实现方式,内容较长,建议收藏后学习,梳理不易,有所收获,点赞支持。
开始之前,先跟大家介绍下我自己写的 PyCharm 使用手册:《PyCharm 中文指南》
《PyCharm 中文指南》使用 300 多张 GIF 动态图的形式,详细讲解了最贴合实际开发的 105个 PyCharm 高效使用技巧,内容通俗易懂,适合所有 Python 开发者。
目前是 2.0 版本,由于 PyCharm 在不同系统下的快捷键有所差异,因此为了照顾不同系统的同学,我特意将电子书分成了 Mac 和 Win 两个版本。
位于 time 模块中的 sleep(secs) 函数,可以实现令当前执行的线程暂停 secs 秒后再继续执行。所谓暂停,即令当前线程进入阻塞状态,当达到 sleep() 函数规定的时间后,再由阻塞状态转为就绪状态,等待 CPU 调度。
基于这样的特性我们可以通过while死循环+sleep()的方式实现简单的定时任务。
代码示例:
import datetime
import time
def time_printer():
now = datetime.datetime.now()
ts = now.strftime('%Y-%m-%d %H:%M:%S')
print('do func time :', ts)
def loop_monitor():
while True:
time_printer()
time.sleep(5) # 暂停5秒
if __name__ == "__main__":
loop_monitor()
主要缺点:
Timeloop是一个库,可用于运行多周期任务。这是一个简单的库,它使用decorator模式在线程中运行标记函数。
示例代码:
import time
from timeloop import Timeloop
from datetime import timedelta
tl = Timeloop()
@tl.job(interval=timedelta(seconds=2))
def sample_job_every_2s():
print "2s job current time : {}".format(time.ctime())
@tl.job(interval=timedelta(seconds=5))
def sample_job_every_5s():
print "5s job current time : {}".format(time.ctime())
@tl.job(interval=timedelta(seconds=10))
def sample_job_every_10s():
print "10s job current time : {}".format(time.ctime())
threading 模块中的 Timer 是一个非阻塞函数,比 sleep 稍好一点,timer最基本理解就是定时器,我们可以启动多个定时任务,这些定时器任务是异步执行,所以不存在等待顺序执行问题。
Timer(interval, function, args=[ ], kwargs={ })
代码示例:
备注:Timer只能执行一次,这里需要循环调用,否则只能执行一次
sched模块实现了一个通用事件调度器,在调度器类使用一个延迟函数等待特定的时间,执行任务。同时支持多线程应用程序,在每个任务执行后会立刻调用延时函数,以确保其他线程也能执行。
class sched.scheduler(timefunc, delayfunc)这个类定义了调度事件的通用接口,它需要外部传入两个参数,timefunc是一个没有参数的返回时间类型数字的函数(常用使用的如time模块里面的time),delayfunc应该是一个需要一个参数来调用、与timefunc的输出兼容、并且作用为延迟多个时间单位的函数(常用的如time模块的sleep)。
代码示例:
import datetime
import time
import sched
def time_printer():
now = datetime.datetime.now()
ts = now.strftime('%Y-%m-%d %H:%M:%S')
print('do func time :', ts)
loop_monitor()
def loop_monitor():
s = sched.scheduler(time.time, time.sleep) # 生成调度器
s.enter(5, 1, time_printer, ())
s.run()
if __name__ == "__main__":
loop_monitor()
scheduler对象主要方法:
个人点评:比threading.Timer更好,不需要循环调用。
在学习python中有任何困难不懂的可以微信扫描下方CSDN官方认证二维码加入python交流学习
schedule是一个第三方轻量级的任务调度模块,可以按照秒,分,小时,日期或者自定义事件执行时间。schedule允许用户使用简单、人性化的语法以预定的时间间隔定期运行Python函数(或其它可调用函数)。
先来看代码,是不是不看文档就能明白什么意思?
import schedule
import time
def job():
print("I'm working...")
schedule.every(10).seconds.do(job)
schedule.every(10).minutes.do(job)
schedule.every().hour.do(job)
schedule.every().day.at("10:30").do(job)
schedule.every(5).to(10).minutes.do(job)
schedule.every().monday.do(job)
schedule.every().wednesday.at("13:15").do(job)
schedule.every().minute.at(":17").do(job)
while True:
schedule.run_pending()
time.sleep(1)
装饰器:通过 @repeat() 装饰静态方法
import time
from schedule import every, repeat, run_pending
@repeat(every().second)
def job():
print('working...')
while True:
run_pending()
time.sleep(1)
传递参数:
import schedule
def greet(name):
print('Hello', name)
schedule.every(2).seconds.do(greet, name='Alice')
schedule.every(4).seconds.do(greet, name='Bob')
while True:
schedule.run_pending()
装饰器同样能传递参数:
from schedule import every, repeat, run_pending
@repeat(every().second, 'World')
@repeat(every().minute, 'Mars')
def hello(planet):
print('Hello', planet)
while True:
run_pending()
取消任务:
import schedule
i = 0
def some_task():
global i
i += 1
print(i)
if i == 10:
schedule.cancel_job(job)
print('cancel job')
exit(0)
job = schedule.every().second.do(some_task)
while True:
schedule.run_pending()
运行一次任务:
import time
import schedule
def job_that_executes_once():
print('Hello')
return schedule.CancelJob
schedule.every().minute.at(':34').do(job_that_executes_once)
while True:
schedule.run_pending()
time.sleep(1)
根据标签检索任务:
# 检索所有任务:schedule.get_jobs()
import schedule
def greet(name):
print('Hello {}'.format(name))
schedule.every().day.do(greet, 'Andrea').tag('daily-tasks', 'friend')
schedule.every().hour.do(greet, 'John').tag('hourly-tasks', 'friend')
schedule.every().hour.do(greet, 'Monica').tag('hourly-tasks', 'customer')
schedule.every().day.do(greet, 'Derek').tag('daily-tasks', 'guest')
friends = schedule.get_jobs('friend')
print(friends)
根据标签取消任务:
# 取消所有任务:schedule.clear()
import schedule
def greet(name):
print('Hello {}'.format(name))
if name == 'Cancel':
schedule.clear('second-tasks')
print('cancel second-tasks')
schedule.every().second.do(greet, 'Andrea').tag('second-tasks', 'friend')
schedule.every().second.do(greet, 'John').tag('second-tasks', 'friend')
schedule.every().hour.do(greet, 'Monica').tag('hourly-tasks', 'customer')
schedule.every(5).seconds.do(greet, 'Cancel').tag('daily-tasks', 'guest')
while True:
schedule.run_pending()
运行任务到某时间:
import schedule
from datetime import datetime, timedelta, time
def job():
print('working...')
schedule.every().second.until('23:59').do(job) # 今天23:59停止
schedule.every().second.until('2030-01-01 18:30').do(job) # 2030-01-01 18:30停止
schedule.every().second.until(timedelta(hours=8)).do(job) # 8小时后停止
schedule.every().second.until(time(23, 59, 59)).do(job) # 今天23:59:59停止
schedule.every().second.until(datetime(2030, 1, 1, 18, 30, 0)).do(job) # 2030-01-01 18:30停止
while True:
schedule.run_pending()
马上运行所有任务(主要用于测试):
import schedule
def job():
print('working...')
def job1():
print('Hello...')
schedule.every().monday.at('12:40').do(job)
schedule.every().tuesday.at('16:40').do(job1)
schedule.run_all()
schedule.run_all(delay_seconds=3) # 任务间延迟3秒
并行运行:使用 Python 内置队列实现:
import threading
import time
import schedule
def job1():
print("I'm running on thread %s" % threading.current_thread())
def job2():
print("I'm running on thread %s" % threading.current_thread())
def job3():
print("I'm running on thread %s" % threading.current_thread())
def run_threaded(job_func):
job_thread = threading.Thread(target=job_func)
job_thread.start()
schedule.every(10).seconds.do(run_threaded, job1)
schedule.every(10).seconds.do(run_threaded, job2)
schedule.every(10).seconds.do(run_threaded, job3)
while True:
schedule.run_pending()
time.sleep(1)
APScheduler(advanceded python scheduler)基于Quartz的一个Python定时任务框架,实现了Quartz的所有功能,使用起来十分方便。提供了基于日期、固定时间间隔以及crontab类型的任务,并且可以持久化任务。基于这些功能,我们可以很方便的实现一个Python定时任务系统。
它有以下三个特点:
APScheduler有四种组成部分:
示例代码:
from apscheduler.schedulers.blocking import BlockingScheduler
from datetime import datetime
# 输出时间
def job():
print(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
# BlockingScheduler
sched = BlockingScheduler()
sched.add_job(my_job, 'interval', seconds=5, id='my_job_id')
sched.start()
6.1 Job 作业
Job作为APScheduler最小执行单位。创建Job时指定执行的函数,函数中所需参数,Job执行时的一些设置信息。
构建说明:
6.2 Trigger 触发器
Trigger绑定到Job,在scheduler调度筛选Job时,根据触发器的规则计算出Job的触发时间,然后与当前时间比较确定此Job是否会被执行,总之就是根据trigger规则计算出下一个执行时间。
目前APScheduler支持触发器:
触发器参数:date
date定时,作业只执行一次。
sched.add_job(my_job, 'date', run_date=date(2009, 11, 6), args=['text'])
sched.add_job(my_job, 'date', run_date=datetime(2019, 7, 6, 16, 30, 5), args=['text'])
触发器参数:interval
interval间隔调度
触发器参数:cron
cron调度
CronTrigger可用的表达式:
# 6-8,11-12月第三个周五 00:00, 01:00, 02:00, 03:00运行
sched.add_job(job_function, 'cron', month='6-8,11-12', day='3rd fri', hour='0-3')
# 每周一到周五运行 直到2024-05-30 00:00:00
sched.add_job(job_function, 'cron', day_of_week='mon-fri', hour=5, minute=30, end_date='2024-05-30'
6.3 Executor 执行器
Executor在scheduler中初始化,另外也可通过scheduler的add_executor动态添加Executor。每个executor都会绑定一个alias,这个作为唯一标识绑定到Job,在实际执行时会根据Job绑定的executor找到实际的执行器对象,然后根据执行器对象执行Job。
Executor的种类会根据不同的调度来选择,如果选择AsyncIO作为调度的库,那么选择AsyncIOExecutor,如果选择tornado作为调度的库,选择TornadoExecutor,如果选择启动进程作为调度,选择ThreadPoolExecutor或者ProcessPoolExecutor都可以。
Executor的选择需要根据实际的scheduler来选择不同的执行器。目前APScheduler支持的Executor:
6.4 Jobstore 作业存储
Jobstore在scheduler中初始化,另外也可通过scheduler的add_jobstore动态添加Jobstore。每个jobstore都会绑定一个alias,scheduler在Add Job时,根据指定的jobstore在scheduler中找到相应的jobstore,并将job添加到jobstore中。作业存储器决定任务的保存方式, 默认存储在内存中(MemoryJobStore),重启后就没有了。APScheduler支持的任务存储器有:
不同的任务存储器可以在调度器的配置中进行配置(见调度器)
6.5 Event 事件
Event是APScheduler在进行某些操作时触发相应的事件,用户可以自定义一些函数来监听这些事件,当触发某些Event时,做一些具体的操作。常见的比如。Job执行异常事件 EVENT_JOB_ERROR。Job执行时间错过事件 EVENT_JOB_MISSED。
目前APScheduler定义的Event:
Listener表示用户自定义监听的一些Event,比如当Job触发了EVENT_JOB_MISSED事件时可以根据需求做一些其他处理。
6.6 调度器
Scheduler是APScheduler的核心,所有相关组件通过其定义。scheduler启动之后,将开始按照配置的任务进行调度。除了依据所有定义Job的trigger生成的将要调度时间唤醒调度之外。当发生Job信息变更时也会触发调度。
APScheduler支持的调度器方式如下,比较常用的为BlockingScheduler和BackgroundScheduler
6.7 Scheduler的工作流程
Scheduler添加job流程:
Scheduler调度流程:
Celery是一个简单,灵活,可靠的分布式系统,用于处理大量消息,同时为操作提供维护此类系统所需的工具, 也可用于任务调度。Celery 的配置比较麻烦,如果你只是需要一个轻量级的调度工具,Celery 不会是一个好选择。
Celery 是一个强大的分布式任务队列,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行。我们通常使用它来实现异步任务(async task)和定时任务(crontab)。异步任务比如是发送邮件、或者文件上传, 图像处理等等一些比较耗时的操作 ,定时任务是需要在特定时间执行的任务。
需要注意,celery本身并不具备任务的存储功能,在调度任务的时候肯定是要把任务存起来的,因此在使用celery的时候还需要搭配一些具备存储、访问功能的工具,比如:消息队列、Redis缓存、数据库等。官方推荐的是消息队列RabbitMQ,有些时候使用Redis也是不错的选择。
它的架构组成如下图:
Celery架构,它采用典型的生产者-消费者模式,主要由以下部分组成:
实际应用中,用户从Web前端发起一个请求,我们只需要将请求所要处理的任务丢入任务队列broker中,由空闲的worker去处理任务即可,处理的结果会暂存在后台数据库backend中。我们可以在一台机器或多台机器上同时起多个worker进程来实现分布式地并行处理任务。
Celery定时任务实例:
Apache Airflow 是Airbnb开源的一款数据流程工具,目前是Apache孵化项目。以非常灵活的方式来支持数据的ETL过程,同时还支持非常多的插件来完成诸如HDFS监控、邮件通知等功能。Airflow支持单机和分布式两种模式,支持Master-Slave模式,支持Mesos等资源调度,有非常好的扩展性。被大量公司采用。
Airflow使用Python开发,它通过DAGs(Directed Acyclic Graph, 有向无环图)来表达一个工作流中所要执行的任务,以及任务之间的关系和依赖。比如,如下的工作流中,任务T1执行完成,T2和T3才能开始执行,T2和T3都执行完成,T4才能开始执行。
Airflow提供了各种Operator实现,可以完成各种任务实现:
除了以上这些 Operators 还可以方便的自定义 Operators 满足个性化的任务需求。
一些情况下,我们需要根据执行结果执行不同的任务,这样工作流会产生分支。如:
这种需求可以使用BranchPythonOperator来实现。
8.1 Airflow 产生的背景
通常,在一个运维系统,数据分析系统,或测试系统等大型系统中,我们会有各种各样的依赖需求。包括但不限于:
crontab 可以很好地处理定时执行任务的需求,但仅能管理时间上的依赖。Airflow 的核心概念 DAG(有向无环图)—— 来表现工作流。
8.2 Airflow 核心概念
DAGs:即有向无环图(Directed AcyclicGraph),将所有需要运行的tasks按照依赖关系组织起来,描述的是所有tasks执行顺序。
Operators:可以简单理解为一个class,描述了DAG中某个的task具体要做的事。其中,airflow内置了很多operators,如BashOperator执行一个bash 命令,PythonOperator 调用任意的Python 函数,EmailOperator用于发送邮件,HTTPOperator 用于发送HTTP请求, SqlOperator用于执行SQL命令等等,同时,用户可以自定义Operator,这给用户提供了极大的便利性。
Tasks:Task 是 Operator的一个实例,也就是DAGs中的一个node。
Task Instance:task的一次运行。Web 界面中可以看到task instance 有自己的状态,包括”running”, “success”, “failed”, “skipped”, “up for retry”等。
Task Relationships:DAGs中的不同Tasks之间可以有依赖关系,如 Task1 >>Task2,表明Task2依赖于Task2了。通过将DAGs和Operators结合起来,用户就可以创建各种复杂的工作流(workflow)。
8.3 Airflow 的架构
在一个可扩展的生产环境中,Airflow 含有以下组件:
生产环境一般使用CeleryExecutor和KubernetesExecutor。
使用CeleryExecutor的架构如图:
使用KubernetesExecutor的架构如图:
其它参考:
朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】。