self.stage1 = nn.Sequential(
conv_bn(3, 64, 2, leaky = 0.1), # 3
conv_dw(64, 96, 1), # 7
conv_dw(96, 96, 2), # 11
conv_dw(96, 128, 1), # 19
conv_dw(128, 128, 2), # 27
conv_dw(128, 144, 1), # 43
)
# import mish
def conv_bn(inp, oup, stride = 1, leaky = 0):
return nn.Sequential(
nn.Conv2d(inp, oup, 3, stride, 1, bias=False),
nn.BatchNorm2d(oup),
# mish.Mish()
nn.ReLU6()
)
1.
x = F.max_pool2d(x, kernel_size=3, stride=2, padding=1)
self.conv2 = nn.Conv2d(96, 96, kernel_size=3, stride=2, padding=1)
self.conv4_0 = nn.Conv2d(128, 128, kernel_size=5, stride=2, padding=2)
增大感受野的方法
主要的方法是从增加网络的深度出发(这也